Доказать что при х стремящимся к 0

18. ЭКВИВАЛЕНТНЫЕ БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ

18.1. Сравнение бесконечно малых функций

Как известно, сумма, разность и произведение двух б.м.ф. есть функция бесконечно малая. Отношение же двух б.м.ф. может вести себя различным образом: быть конечным числом, быть бесконечно большой функцией, бесконечно малой или вообще не стремиться ни к какому пределу.

Две б.м.ф. сравниваются между собой с помощью их отношения.

Пусть α=α(х) и ß=ß(х) есть б.м.ф. при х→хо, т. е.

и

1. Если =А ¹ 0 (АєR), то α и ß называются бесконечно малыми одного порядка.

2. Если, =0, то α називатся бесконечно малой более высокого порядка , чем ß.

3. Если =∞, то α называется бесконечно малой более низкого порядка, чем ß.

4. Если не существует, то α и ß называются несравнимыми бесконечно малыми.

Отметим, что таковы же правила сравнения б.м.ф. при х →±∞, х →х±0.

2 и ß=14х 2 при х→0 Решение: При х→0 это б.м.ф. одного порядка, так как

Говорят, что б.м.ф. а и ß одного порядка стремятся к нулю с примерно одинаковой скоростью

4 и ß=7х б.м.ф. одного порядка при х→0?

Решение: При х→0 функция α есть б.м.ф. более высокого порядка, чем ß, так как

В этом случае б.м.ф. α стремится к нулю быстрее, чем ß.

Решение: Так как

то α есть б.м.ф. более низкого порядка, чем ß.

Решение: Функции и ß=х при х→0 являются несравнимыми б.м.ф., так как предел

18.2. Эквивалентные бесконечно малые и основные теоремы о них

Среди бесконечно малых функций одного порядка особую роль играют так называемые эквивалентные бесконечно малые.

Если то α и ß называются эквивалентными бесконечно малыми (при х→x); это обозначается так: α

х при х→0, т.к при x→0, т. к.

Теорема 18.1 . Предел отношения двух бесконечно малых функций не изменится, если каждую или одну из них заменить эквивалентной ей бесконечно малой.

Теорема 18.2 . Разность двух эквивалентных бесконечно малых функций есть бесконечно малая более высокого порядка, чем каждая из них.

Справедливо и обратное утверждение: если разность б.м.ф. α и ß есть бесконечно малая высшего порядка, чем α или ß, то α и ß — эквивалентные бесконечно малые.

Действительно, так как

т. е. Отсюда т. е. α

ß. Аналогично, если то α

Теорема 18.3 . Сумма конечного числа бесконечно малых функций разных порядков эквивалентна слагаемому низшего порядка.

Докажем теорему для двух функций. Пусть α→0, ß→0 при х→хо, причем α — б.м.ф. высшего порядка, чем ß, т. е. . Тогда

Слагаемое, эквивалентное сумме бесконечно малых, называется главной частью этой суммы.

Замена суммы б.м.ф. ее главной частью называется отбрасыванием бесконечно малых высшего порядка.

18.3. Применение эквивалентных бесконечно малых функций

Для раскрытия неопределённостей вида 0/0 часто бывают полезным применять принцип замены бесконечно малых эквивалентными и другие свойства эквивалентных бесконечно малых функций. Как известно, sinx

х при х→0. Приведем еще примеры эквивалентных б.м.ф.

Решение:

Решение: Обозначим arcsinх=t. Тогда х=sint и t→0 при х->0.

Следовательно, arcsin х

Ниже приведены важнейшие эквивалентности, которые используются при вычислении пределов:

х при х→0;
tgx

х (х→0);
arcsinх

x 2 /2 (х→0);
е х −1

х*ln(a) (х→0);
ln(1+х)

Решение: Так как tg2x

3х при х→0, то

Решение: Обозначим 1/х=t, из х→∞ следует t→0. Поэтому

Читайте также:  Дробь в другую сторону на клавиатуре

Решение: Так как arcsin(x-1)

(х-1) при х→1, то

18.4 Приближенные вычисления

ß, то, отбрасывая в равенстве α=ß+(α-ß) бесконечно малую более высокого порядка, т. е. α ® ß, получим приближенное равенство α≈ß.

Оно позволяет выражать одни бесконечно малые через другие. Приведенные выше важнейшие эквивалентности служат источником ряда приближенных формул.

Приведенные формулы справедливы при малых х, и они тем точнее, чем меньше х.

Например, графики функций y=tgx и y=x в окрестности точки 0 практически не различимы (см. рис. 114), а кривая у=sinx в окрестности точки 0 сливается с прямой у=х (рис. 115). На рисунках 116−118 проиллюстрированы некоторые из важнейших эквивалентностей, о которых говорилось выше.

Решение: In(1,032)=ln(1+0,032)≈0,032 Для сравнения результата по таблице логарифмов находим, что In 1,032=0,031498.

Помогите пожалуйста, очень прошу.

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Sa1va 10.10.2015

Ответ

Проверено экспертом

Сначала покажем, что данные функции являются бесконечно малыми:

Теперь найдем предел отношения данных функций:

Мы видим, что предел равен конечному отличному от 0 числу, следовательно данные функции f(x) и g(x) являются бесконечно малыми одного порядка малости при

Определение пределов последовательности и функции, свойства пределов, первый и второй замечательные пределы, примеры.

Постоянное число а называется пределом последовательности n>, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству

|xn — a| N, лежат внутри интервала (a-ε , a+ε), т.е. попадают в какую угодно малую ε-окрестность точки а.

Последовательность, имеющая предел, называется сходящейся, в противном случае — расходящейся.

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn = f(n) целочисленного аргумента n.

Пусть дана функция f(x) и пусть a — предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a. Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности n> значений аргумента, стремящейся к а, соответствующие им последовательности n)> имеют один и тот же предел А.

Это определение называют определением предела функции по Гейне, или «на языке последовательностей».

Определение 2. Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное, как угодно малое положительное число ε, можно найти такое δ >0 (зависящее от ε), что для всех x, лежащих в ε-окрестности числа а, т.е. для x, удовлетворяющих неравенству
0 » 2.7 — основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.

Используются на практике и следствия формулы (6.11):

(6.12)

(6.13)

(6.14)

в частности предел,

Eсли x → a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→a и при этом x и называются соответственно предел справа и предел слева функции f(x) в точке а. Чтобы существовал предел функции f(x) при x→ a необходимо и достаточно, чтобы . Функция f(x) называется непрерывной в точке x, если предел

(6.15)

Условие (6.15) можно переписать в виде:

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Читайте также:  Импорт куки в firefox

Если равенство (6.15) нарушено, то говорят, что при x = xo функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(xo)= f(0) не определено, поэтому в точке xo = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке xo, если предел

и непрерывной слева в точке xo, если предел

Непрерывность функции в точке xo равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке xo, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(xo). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел существует и не равен f(xo), то говорят, что функция f(x) в точке xo имеет разрыв первого рода, или скачок.

2. Если предел равен +∞ или -∞ или не существует, то говорят, что в точке xo функция имеет разрыв второго рода.

Например, функция y = ctg x при x → +0 имеет предел, равный +∞ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка [a,b], называется непрерывной в [a,b]. Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 ×1,5 = 150, а еще через полгода — в 150× 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 ≈ 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100×(1 +1/10) 10 ≈ 259 (ден. ед.),

100×(1+1/100) 100 ≈ 270 (ден. ед.),

100×(1+1/1000) 1000 ≈271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Читайте также:  Как включить блютуз на ноутбуке dexp

Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность xn =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n > N имеет место неравенство |xn −1| 0. Так как xn −1 =(n+1)/n — 1= 1/n, то для отыскания N достаточно решить неравенство 1/n 1/ε и, следовательно, за N можно принять целую часть от 1/ε N = E(1/ε). Мы тем самым доказали, что предел .

Пример 3.2. Найти предел последовательности, заданной общим членом .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n → ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем xn, разделив числитель и знаменатель первого слагаемого на n 2 , а второго на n. Затем, применяя теорему предел частного и предел суммы, найдем:

Пример 3.3. . Найти .

Решение.

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3.4. Найти ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞. Преобразуем формулу общего члена:

Пример 3.5. Дана функция f(x)=2 1/x . Доказать, что предел не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность < xn >, сходящуюся к 0, т.е. Покажем, что величина f(xn)= для разных последовательностей ведет себя по-разному. Пусть xn = 1/n. Очевидно, что , тогда предел Выберем теперь в качестве xn последовательность с общим членом xn = −1/n, также стремящуюся к нулю. Поэтому предел не существует.

Пример 3.6. Доказать, что предел не существует.

Решение. Пусть x1, x2. xn. — последовательность, для которой
. Как ведет себя последовательность n)> = n > при различных xn→ ∞

Если xn= p n, то sin xn= sin ( p n) = 0 при всех n и предел Если же
xn=2 p n+ p /2, то sin xn= sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.

Пример 3.7 Найти предел

Решение. Имеем: . Обозначим t = 5x. При x →0 имеем: t →0. Применяя формулу (3.10), получим .

Пример 3.8. Вычислить предел .

Решение. Обозначим y=π-x. Тогда при x→π, y→0. Имеем:

sin 3x = sin 3(π-y) = sin(3π-3y) = sin 3y.

sin 4x = sin 4(π-y) = sin (π4−4y)= — sin 4y.

Предел

Пример 3.9. Найти предел .

Решение. Обозначим arcsin x=t. Тогда x=sin t и при x→0, t→0. .

Пример 3.10. Найти 1) ;

2) ;

3) .

1) Применяя теорему 1 предел разности и предел произведения, находим предел знаменателя: .

Предел знаменателя не равен нулю, поэтому, по теореме 1 предел частного, получаем:

.

2) Здесь числитель и знаменатель стремятся к нулю, т.е. имеет место неопределенность вида 0/0. Теорема о пределе частного непосредственно неприменима. Для «раскрытия неопределенности» преобразуем данную функцию. Разделив числитель и знаменатель на x-2, получим при x ≠ 2 равенство:

Так как предел , то, по теореме предел частного, найдем

3. Числитель и знаменатель при x &rarr ∞ являются бесконечно большими функциями. Поэтому теорема предел частного непосредственно не применима. Разделим числитель и знаменатель на x 2 и к полученной функции применим теорему предел частного:

.

Пример 3.11. Найти предел .

Решение. Здесь числитель и знаменатель стремятся к нулю:, x-9→0, т.е. имеем неопределенность вида .

Преобразуем данную функцию, умножив числитель и знаменатель на неполный квадрат суммы выражения , получим

.

Пример 3.12. Найти предел .

Решение.

Оцените статью
Adblock detector