Если функция монотонна то она обратима

Определение и свойства

Определение обратной функции
Пусть функция имеет область определения X и множество значений Y . И пусть она обладает свойством:
для всех .
Тогда для любого элемента из множества Y можно поставить в соответствие только один элемент множества X , для которого . Такое соответствие определяет функцию, которая называется обратной функцией к . Обратная функция обозначается так:
.

Из определения следует, что
;
для всех ;
для всех .

Лемма о взаимной монотонности прямой и обратной функций
Если функция строго возрастает (убывает), то существует обратная функция , которая также строго возрастает (убывает).
Доказательство ⇓

Свойство о симметрии графиков прямой и обратной функций
Графики прямой и обратной функций симметричны относительно прямой .
Доказательство ⇓

Теорема о существовании и непрерывности обратной функции на отрезке
Пусть функция непрерывна и строго возрастает (убывает) на отрезке . Тогда на отрезке определена и непрерывна обратная функция , которая строго возрастает (убывает).
Доказательство ⇓

Для возрастающей функции . Для убывающей — .

Теорема о существовании и непрерывности обратной функции на интервале
Пусть функция непрерывна и строго возрастает (убывает) на открытом конечном или бесконечном интервале . Тогда на интервале определена и непрерывна обратная функция , которая строго возрастает (убывает).
Доказательство ⇓

Для возрастающей функции .
Для убывающей: .

Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.

Если функция непрерывна и строго возрастает (убывает) на полуинтервале или , то на полуинтервале или определена обратная функция , которая строго возрастает (убывает). Здесь .

Если строго возрастает, то интервалам и соответствуют интервалы и . Если строго убывает, то интервалам и соответствуют интервалы и .
Эта теорема доказывается тем же способом, что и теорема о существовании и непрерывности обратной функции на интервале.

Примеры обратных функций

Арксинус

Рассмотрим тригонометрическую функцию синус: . Она определена и непрерывна для всех значений аргумента , но не является монотонной. Однако, если сузить область определения, то можно выделить монотонные участки. Так, на отрезке , функция определена, непрерывна, строго возрастает и принимает значения от −1 до +1 . Поэтому имеет на нем обратную функцию, которую называют арксинусом. Арксинус имеет область определения и множество значений .

Логарифм

Показательная функция определена, непрерывна и строго возрастает при всех значений аргумента . Множеством ее значений является открытый интервал . Обратной функцией является логарифм по основанию два. Он имеет область определения и множество значений .

Квадратный корень

Степенная функция определена и непрерывна для всех . Множеством ее значений является полуинтервал . Но она не является монотонной при всех значений аргумента. Однако, на полуинтервале она непрерывна и строго монотонно возрастает. Поэтому если, в качестве области определения, взять множество , то существует обратная функция, которая называется квадратным корнем. Обратная функция имеет область определения и множество значений .

Пример. Доказательство существования и единственности корня степени n

Докажите, что уравнение , где n — натуральное, — действительное неотрицательное число, имеет единственное решение на множестве действительных чисел, . Это решение называется корнем степени n из числа a . То есть нужно показать, что любое неотрицательное число имеет единственный корень степени n .

Рассмотрим функцию от переменной x :
(П1) .

Докажем, что она непрерывна.
Используя определение непрерывности, покажем, что
.
Применяем формулу бинома Ньютона:
(П2)
.
Применим арифметические свойства пределов функции. Поскольку , то отлично от нуля только первое слагаемое:
.
Непрерывность доказана.

Докажем, что функция (П1) строго возрастает при .
Возьмем произвольные числа , связанные неравенствами:
, , .
Нам нужно показать, что . Введем переменные . Тогда . Поскольку , то из (П2) видно, что . Или
.
Строгое возрастание доказано.

Найдем множество значений функции при .
В точке , .
Найдем предел .
Для этого применим неравенство Бернулли. При имеем:
.
Поскольку , то и .
Применяя свойство неравенств бесконечно больших функций находим, что .
Таким образом, , .

Согласно теореме об обратной функции, на интервале определена и непрерывна обратная функция . То есть для любого существует единственное , удовлетворяющее уравнению . Поскольку у нас , то это означает, что для любого , уравнение имеет единственное решение, которое называют корнем степени n из числа x :
.

Читайте также:  Движение циклонов в реальном времени со спутника

Доказательства свойств и теорем

Доказательство леммы о взаимной монотонности прямой и обратной функций

Пусть функция имеет область определения X и множество значений Y . Докажем, что она имеет обратную функцию. Исходя из определения ⇑, нам нужно доказать, что
для всех .

Допустим противное. Пусть существуют числа , так что . Пусть при этом . Иначе, поменяем обозначения, чтобы было . Тогда, в силу строгой монотонности f , должно выполняться одно из неравенств:
если f строго возрастает;
если f строго убывает.
То есть . Возникло противоречие. Следовательно, имеет обратную функцию .

Пусть функция строго возрастает. Докажем, что и обратная функция также строго возрастает. Введем обозначения:
. То есть нам нужно доказать, что если , то .

Допустим противное. Пусть , но .

Если , то . Этот случай отпадает.

Пусть . Тогда, в силу строгого возрастания функции , , или . Возникло противоречие. Поэтому возможен только случай .

Для строго возрастающей функции лемма доказана. Аналогичным образом можно доказать эту лемму и для строго убывающей функции.

Доказательство свойства о симметрии графиков прямой и обратной функций

Пусть — произвольная точка графика прямой функции :
(2.1) .
Покажем, что точка , симметричная точке A относительно прямой , принадлежит графику обратной функции :
.
Из определения обратной функции следует, что
(2.2) .
Таким образом, нам нужно показать (2.2).

Из точек A и S опустим перпендикуляры на оси координат. Тогда
, .

Через точку A проводим прямую, перпендикулярную прямой . Пусть прямые пересекаются в точке C . На прямой строим точку S так, чтобы . Тогда точка S будет симметрична точке A относительно прямой .

Рассмотрим треугольники и . Они имеют две равные по длине стороны: и , и равные углы между ними: . Поэтому они конгруэнтны. Тогда
.

Рассмотрим треугольник . Поскольку , то
.
Тоже самое относится к треугольнику :
.
Тогда
.

Итак, уравнение (2.2):
(2.2)
выполняется, поскольку , и выполняется (2.1):
(2.1) .

Так как мы выбрали точку A произвольно, то это относится ко всем точкам графика :
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику обратной функции .
Далее мы можем поменять и местами. В результате получим, что
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику функции .
Отсюда следует, что графики функций и симметричны относительно прямой .

Доказательство теоремы о существовании и непрерывности обратной функции на отрезке

Пусть обозначает область определения функции — отрезок .

1. Покажем, что множеством значений функции является отрезок :
,
где .

Действительно, поскольку функция непрерывна на отрезке , то по теореме Вейерштрасса она достигает на нем минимума и максимума . Тогда по теореме Больцано — Коши функция принимает все значения из отрезка . То есть для любого существует , для которого . Поскольку и есть минимум и максимум, то функция принимает на отрезке только значения из множества .

2. Поскольку функция строго монотонна, то согласно вышеприведенной лемме ⇑, существует обратная функция , которая также строго монотонна (возрастает, если возрастает ; и убывает, если убывает ). Областью определения обратной функции является множество , а множеством значений — множество .

3. Теперь докажем, что обратная функция непрерывна.

3.1. Пусть есть произвольная внутренняя точка отрезка : . Докажем, что обратная функция непрерывна в этой точке.

Пусть ей соответствует точка . Поскольку обратная функция строго монотонна, то есть внутренняя точка отрезка :
.
Согласно определению непрерывности нам нужно доказать, что для любого имеется такая функция , при которой
(3.1) для всех .

Заметим, что мы можем взять сколь угодно малым. Действительно, если мы нашли такую функцию , при которой неравенства (3.1) выполняются при достаточно малых значениях , то они будут автоматически выполняться и при любых больших значениях , если положить при .

Возьмем настолько малым, чтобы точки и принадлежали отрезку :
.
Введем и упорядочим обозначения:

.

Преобразуем первое неравенство (3.1):
(3.1) для всех .
;
;
;
(3.2) .
Поскольку строго монотонна, то отсюда следует, что
(3.3.1) , если возрастает;
(3.3.2) , если убывает.
Поскольку обратная функция также строго монотонна, то из неравенств (3.3) следуют неравенства (3.2).

Неравенства (3.3) определяют открытый интервал, концы которого удалены от точки на расстояния и . Пусть есть наименьшее из этих расстояний:
.
В силу строгой монотонности , , . Поэтому и . Тогда интервал будет лежать в интервале, определяемом неравенствами (3.3). И для всех значений , принадлежащих ему будут выполняться неравенства (3.2).

Итак, мы нашли, что для достаточно малого , существует , так что
при .
Теперь изменим обозначения.
Для достаточно малого , существует такое , так что
при .
Это означает, что обратная функция непрерывна во внутренних точках .

3.2. Теперь рассмотрим концы области определения. Здесь все рассуждения остаются теми же самыми. Только нужно рассматривать односторонние окрестности этих точек. Вместо точки будет или , а вместо точки — или .

Так, для возрастающей функции , . Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .

Читайте также:  В какие слоты вставлять оперативную память

Для убывающей функции , .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .
Обратная функция непрерывна в точке , поскольку для любого достаточно малого имеется , так что
при .

Доказательство теоремы о существовании и непрерывности обратной функции на интервале

Пусть обозначает область определения функции — открытый интервал . Пусть — множество ее значений. Согласно приведенной выше лемме ⇑, существует обратная функция , которая имеет область определения , множество значений и является строго монотонной (возрастает если возрастает и убывает если убывает ). Нам осталось доказать, что
1) множеством является открытый интервал , и что
2) обратная функция непрерывна на нем.
Здесь .

1. Покажем, что множеством значений функции является открытый интервал :
.

Как и всякое непустое множество, элементы которого имеют операцию сравнения, множество значений функции имеет нижнюю и верхнюю грани:
.
Здесь и могут быть конечными числами или символами и .

1.1. Покажем, что точки и не принадлежат множеству значений функции. То есть множество значений не может быть отрезком .

Если или является бесконечно удаленной точкой: или , то такая точка не является элементом множества. Поэтому она не может принадлежать множеству значений.

Пусть (или ) является конечным числом. Допустим противное. Пусть точка (или ) принадлежит множеству значений функции . То есть существует такое , для которого (или ). Возьмем точки и , удовлетворяющие неравенствам:
.
Поскольку функция строго монотонна, то
, если f возрастает;
, если f убывает.
То есть мы нашли точку, значение функции в которой меньше (больше ). Но это противоречит определению нижней (верхней) грани, согласно которому
для всех .
Поэтому точки и не могут принадлежать множеству значений функции .

1.2. Теперь покажем, что множество значений является интервалом , а не объединением интервалов и точек. То есть для любой точки существует , для которого .

Согласно определениям нижней и верхней граней, в любой окрестности точек и содержится хотя бы один элемент множества . Пусть — произвольное число, принадлежащее интервалу : . Тогда для окрестности существует , для которого
.
Для окрестности существует , для которого
.

Поскольку и , то . Тогда
(4.1.1) если возрастает;
(4.1.2) если убывает.
Неравенства (4.1) легко доказать от противного. Но можно воспользоваться леммой ⇑, согласно которой на множестве существует обратная функция , которая строго возрастает, если возрастает и строго убывает, если убывает . Тогда сразу получаем неравенства (4.1).

Итак, мы имеем отрезок , где если возрастает;
если убывает.
На концах отрезка функция принимает значения и . Поскольку , то по теореме Больцано — Коши, существует точка , для которой .

Поскольку , то тем самым мы показали, что для любого существует , для которого . Это означает, что множеством значений функции является открытый интервал .

2. Теперь покажем, что обратная функция непрерывна в произвольной точке интервала : . Для этого применим предыдущую теорему ⇑ к отрезку . Поскольку , то обратная функция непрерывна на отрезке , в том числе и в точке .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Автор: Олег Одинцов . Опубликовано: 27−10−2018 Изменено: 23−11−2018

Разделы: Математика

  • развивать навыки самоконтроля, предметную речь;
  • овладеть понятием обратная функция и усвоить методы нахождения обратной функции;

Воспитательная: формировать коммуникативную компетентность.

Оборудование: компьютер, проектор, экран, интерактивная доска SMART Board, раздаточный материал (самостоятельная работа) для работы в группе.

Ход урока.

1. Организационный момент.

Цель — подготовка учащихся к работе на уроке:

— настрой учащихся на работу, организация внимания;

— сообщение темы и цели урока.

2. Актуализация опорных знаний учащихся. Фронтальный опрос.

Цель — установить правильность и осознанность изученного теоретического материала, повторение пройденного материала.

Для учащихся на интерактивной доске демонстрируется график функции. Учителем формулируется задание — рассмотреть график функции и перечислить изученные свойства функции. Учащиеся перечисляют свойства функции в соответствии со схемой исследования. Учитель справа от графика функции маркером на интерактивной доске записывает названные свойства.

  1. D(f) = [-4;),E(y) = [0;),
  2. ни четная, ни нечетная, непериодическая, непрерывная, ограничена снизу;
  3. y=0, при х=0
  4. y>0 при на [-4;0) и на [0;)
  5. возрастает на [-2;-1] и на [0;)
    убывает на [-4;-2] и на [-1;0]
  6. yнаиб— не существует
    yнаим=0 при х=0
  7. xmax= −1 ,ymax = 2
    xmin = −2, ymin = 1
    xmin = 0, ymin = 0
  8. Выпукла вниз на [4;-1], выпукла вверх на [1;), невыпуклая на [-1;1].

По окончании исследования учитель сообщает, что сегодня на уроке они познакомятся еще с одним свойством функции — обратимостью. Для осмысленного изучения нового материала учитель предлагает ребятам познакомиться с основными вопросами, на которые учащиеся должны дать ответ по окончании урока. Вопросы записаны на обыкновенной доске и в виде раздаточного материала есть у каждого ученика (раздается до урока)

  1. Какая функция называется обратимой?
  2. Любая ли функция обратима?
  3. Какая функция называется обратной данной?
  4. Как связаны область определения и множество значений функции и обратной ей функции?
  5. Если функция задана аналитически, как задать формулой обратную функцию?
  6. Если функция задана графически, как построить график обратной ей функции?
Читайте также:  Как войти в инженерное меню нокиа

3. Объяснение нового материала.

Цель — формировать знания по новой теме в соответствии с программным материалом; изучить свойство обратимости функции и научить находить функцию, обратную данной; развивать предметную речь.

Учитель проводит изложение материала в соответствии с материалом параграфа. На интерактивной доске учитель проводит сравнение графиков двух функций, у которых области определения и множества значений одинаковы, но одна из функций монотонна, а другая нет, тем самым подводит учащихся под понятия обратимой функции.

Затем учитель формулирует определение обратимой функции и проводит доказательство теоремы об обратимой функции, используя график монотонной функции на интерактивной доске.

Определение 1: Функцию y=f(x), x X называют обратимой, если любое свое значение она принимает только в одной точке множества X.

Теорема: Если функция y=f(x) монотонна на множестве X , то она обратима.

  1. Пусть функция y=f(x) возрастает на Х и пусть х1≠х2— две точки множества Х.
  2. Для определенности пусть х1 −1 (y) и называют обратной по отношению к функции y=f(x).

Учащимся предлагается сделать вывод о связи между областью определения и множеством значений обратных функций.

Для рассмотрения вопроса о способах нахождения функции обратной данной, учитель привлек двух учащихся. Ребята накануне получили задание у учителя самостоятельно разобрать аналитический и графический способы нахождения функции обратной данной. Учитель выступил в роли консультанта при подготовке учащихся к уроку.

Сообщение первого ученика.

Замечание: монотонность функции, является достаточным условием существования обратной функции. Но оно не является необходимым условием.

Учащийся привел примеры различных ситуаций, когда функция не монотонна, но обратима, когда функция не монотонна и не обратима, когда монотонна и обратима

Затем ученик знакомит учащихся со способом нахождения обратной функции, заданной аналитически.

  1. Убедиться, что функция монотонна.
  2. Выразить переменную х через у.
  3. Переобозначить переменные. Вместо х=f −1 (y) пишут y=f −1 (x)

Затем решает два примера на нахождение функции обратной данной.

Пример 1: Показать, что для функции y=5x-3 существует обратная функция, и найти ее аналитическое выражение.

Решение. Линейная функция y=5x-3 определена на R, возрастает на R и область ее значений есть R. Значит, обратная функция существует на R. Чтобы найти ее аналитическое выражение, решим уравнение y=5x-3 относительно х; получим Это и есть искомая обратная функция. Она определена и возрастает на R.

Пример 2: Показать, что для функции y=x 2 , х≤0 существует обратная функция, и найти ее аналитическое выражение.

Функция непрерывна, монотонна в своей области определения, следовательно, она обратима. Проанализировав области определения и множества значений функции, делается соответствующий вывод об аналитическом выражении для обратной функции.

Ответ:

Второй ученик выступает с сообщением о графическом способе нахождения обратной функции. В ходе своего объяснения ученик использует возможности интерактивной доски .

Чтобы получить график функции y=f −1 (x), обратной по отношению к функции y=f(x), надо график функции y=f(x)преобразовать симметрично относительно прямой y=x.

Во время объяснения на интерактивной доске выполняется следующее задание:

Построить в одной системе координат график функции и график обратной ей функции. Запишите аналитическое выражение обратной функции.

4. Первичное закрепление нового материала.

Цель — установить правильность и осознанность понимания изученного материала, выявить пробелы первичного осмысления материала, провести их коррекцию.

Учащиеся делятся на пары. Им раздаются листы с заданиями, в которых они и выполняют работу в парах. Время на выполнение работы ограничено (5−7 мин). Одна пара учащихся работает на компьютере, проектор на это время выключается и остальным ребятам не видно, как работают учащиеся на компьютере.

По окончании времени (предполагается, что с работой справилось большинство учащихся) на интерактивной доске (вновь включается проектор) показывается работа учащихся, где и выясняется в ходе проверки правильность выполнения задания в паре. При необходимости учителем проводится коррекционная, разъясняющая работа.

Самостоятельная работа в парах

5. Итог урока. По вопросам, которые были заданы перед началом лекции. Объявление оценок за урок.

Домашнее задание §10. №№ 10.6(а,в) 10.8−10.9(б) 10.12 (б)

Алгебра и начала анализа. 10 класс В 2-х частях для общеобразовательных учреждений (профильный уровень) /А.Г.Мордкович, Л.О.Денищева, Т.А.Корешкова и др.; под ред. А.Г.Мордковича, М: Мнемозина, 2007 год

Ответ

1. Если функция монотонна то она обратима ВЕРНО

2. Кусочная функция не может быть непрерывной НЕВЕРНО

3. При разных значениях х могут получаться равные значения у ВЕРНО

4. Одному значению х могут соответствовать различные значения у НЕВЕРНО

Оцените статью
Adblock detector