История хранения звуковой информации

Перфорированная бумажная лента

В большинстве ранних компьютеров использовалась бумажная лента, намотанная на бобины. Информация хранилась на ней в виде дырочек. Некоторые машины, такие как Colossus Mark 1 (1944), работали с данными, которые вводились при помощи ленты в реальном времени. Более поздние компьютеры, например, Manchester Mark 1 (1949), считывали программы с ленты и для последующего выполнения загружали их в примитивное подобие электронной памяти. Перфорированная лента использовалась для записи и чтения данных на протяжении тридцати лет.

История перфокарт уходит корнями в самое начало XIX века, когда они использовались для управления ткацкими станками. В 1890 году Герман Холлерит применил перфокарту для обработки данных переписи населения в США. Именно он нашел компанию (будущую IBM), которая использовала такие карты в своих счетных машинах.

В 1950-х годах IBM уже вовсю использовала в своих компьютерах перфокарты для хранения и ввода данных, а вскоре этот носитель стали применять и другие производители. Тогда были распространены 80-столбцовые карты, в которых для одного символа отводился отдельный столбец. Кто-то может удивиться, но в 2002 году IBM все еще продолжала разработки в области технологии перфокарт. Правда, в XXI веке компанию интересовали карточки размером с почтовую марку, способные хранить до 25 миллионов страниц информации.

Вместе с выходом первого американского коммерческого компьютера UNIVAC I (1951) в IT-индустрии началась эра магнитной пленки. Первопроходцем, как водится, снова стала IBM, потом «подтянулись» другие. Магнитная лента наматывалась открытым способом на катушки и представляла собой очень тонкую полосу пластика, покрытого магниточувствительным веществом. Машины записывали и считывали данные при помощи специальных магнитных головок, встроенных в привод бобин. Магнитная лента широко использовалась во многих моделях компьютеров (особенно мейнфреймах и мини-компьютерах) вплоть до 1980-х, пока не изобрели ленточные картриджи.

Первые съемные диски

В 1963 году IBM представила первый винчестер со съемным диском — IBM 1311. Он представлял собой набор взаимозаменяемых дисков. Каждый набор состоял из шести дисков диаметром 14 дюймов, вмещавших до 2 Мб информации. В 1970-х многие винчестеры, к примеру, DEC RK05, поддерживали такие дисковые наборы, особенно часто их использовали производители миникомпьютеров для продажи программного обеспечения

В 1960-х производители компьютерного железа научились помещать рулоны магнитной ленты в миниатюрные пластиковые картриджи. От своих предшественниц, бобин, они отличались большим сроком жизни, портативностью и удобством. Наибольшее распространение они получили в 1970-е и 1980-е. Как и бобины, картриджи оказались очень гибкими носителями: если нужно было записать очень много информации, в картридж просто помещалось больше ленты.

Сегодня ленточные картриджи типа 800-гигабайтного LTO Ultrium используются для масштабной поддержки серверов, хотя в последние годы их популярность упала ввиду большего удобства переноса данных с винчестера на винчестер.

Печать на бумаге

В 1970-х благодаря относительно низкой стоимости популярность набирают персональные компьютеры. Однако существовавшие способы хранения данных многим оказались не по карману. Один из первых ПК, MITS Altair поставлялся и вовсе без носителей для записи информации. Пользователям предлагалось вводить программы при помощи специальных тумблеров на передней панели. Тогда, на заре развития «персоналок», пользователям нередко приходилось в буквальном смысле вставлять в компьютер листки с написанными от руки программами. Позднее программы стали распространяться в печатном виде через бумажные журналы.

В 1971 году на свете появилась первая дискета IBM. Она представляла собой покрытый магнитным веществом 8-дюймовый гибкий диск, помещенный в пластиковый корпус. Пользователи быстро поняли, что для загрузки данных в компьютер «флоппи-диски» быстрее, дешевле и компактнее, чем стопки перфокарт. В 1976 году один из создателей первой дискеты, Алан Шугарт, предложил ее новый формат — 5,25-дюймов. В таком размер просуществовала до конца 1980-х, пока не появились 3.5-дюймовые дискеты Sony.

Компакт-кассета была изобретена компанией Philips, которая догадалась помесить две небольшие катушки магнитной пленки в пластиковый корпус. Именно в таком формате в 1960-х годах делались аудиозаписи. HP использовала такие кассеты в своем десктопе HP 9830 (1972), но по началу такие кассеты в качестве носителей цифровой информации особой популярностью не пользовались. Потом искатели недорогих носителей данных все же обернули свой взор в сторону кассет, которые с их легкой руки оставались востребованными до начала 1980-х. данные на них, кстати, можно было загружать с обычного аудиоплеера.

ROM-картридж — это плата, состоящая из постоянного запоминающего устройства (ROM) и коннектора, помещенных в твердую оболочку. Область применения картриджей — компьютерные игры и программы. Так, в 1976 году компания Fairchild выпустила ROM-картридж для записи ПО под видеоприставку Fairchild Channel F. Вскоре под использование ROM- картриджей были адаптированы и домашние компьютеры типа Atari 800 (1979) или TI-99/4 (1979). ROM-картриджи были просты в использовании, но относительно дороги, из-за чего, собственно, и «умерли».

Великие эксперименты с дискетами

Читайте также:  Видеокарта palit geforce gts 450 1024mb gddr5

В 1980-х многие компании попробовали создать альтернативу дискете размером 3,5 дюйма. Одно такое изобретение (на фото вверху в центре) трудно назвать дискетой даже с натяжкой: картридж ZX Microdrive состоял из огромного мотка магнитной ленты, по принципу восьмидорожковой кассеты. Другой экспериментатор, Apple, создал дискету FileWare (справа), которая поставлялась вместе с первым компьютером Apple Lisa — худшим девайсом в истории компании по версии Network World, a также 3-дюймовый Compact Disk (внизу слева) и редкую сейчас 2-дюймовую дискету LT-1 (вверху слева), использовавшуюся исключительно в ноутбуке Zenith Minisport 1989 года выпуска. Остальные эксперименты завершились созданием продуктов, которые стали нишевыми и не смогли повторить успех своих 5,25-дюймовой и 3,5-дюймовой предшественниц.

Компакт-диск, изначально использовавшийся как носитель цифровой аудиоинформации, обязан своим рождением совместному проекту Sony и Philips и впервые появился на рынке в 1982 году. Цифровые данные хранятся на этом пластиковом носителе в виде микроуглублений на его зеркальной поверхности, а считывается информация при помощи лазерной головки. Оказалось, что цифровые CD как нельзя лучше подходят для хранения компьютерных данных, и вскоре те же Sony и Philips доработали новинку. Так в 1985 году мир узнал о CD-ROMах.

На протяжении последующих 25 лет оптический диск претерпел массу изменений, его эволюционная цепочка включает DVD, HD-DVD и Blu-ray. Значимой вехой было появление в 1988 году CD-Recordable (CD-R), позволившего пользователям самостоятельно записывать данные на диск. В конце 1990-х оптические диски, наконец, подешевели, и окончательно отодвинули дискеты на задний план.

Как и компакт-диски, магнитооптические диски «читает» лазер. Однако в отличие от обычных CD и CD-R большинство магнитооптических носителей позволяют многократно наносить и стирать данные. Это достигается посредством взаимодействия магнитного процесса и лазера при записи данных. Первый магнитооптический диск входил в комплект компьютера NeXT (1988 год, фото справа внизу), а емкость его составляла 256 Мб. Самый известный носитель этого типа — аудиодиск MiniDisc Sony (вверху в центре, 1992 год). Был у него и «собрат» для хранения цифровых данных, который назывался MD-DATA (слева вверху). Магнитооптические диски производятся до сих пор, однако из-за малой емкости и относительно высокой стоимости они перешли в разряд нишевых продуктов.

Iomega и Zip Drive

Iomega заявила о себе на рынке носителей информации в 1980-х, выпустив картриджи с магнитными дисками Bernoulli Box, емкостью от 10 до 20 Мб. Более поздняя интерпретация этой технологии воплотилась в так называемом носителе Zip (1994 год), который вмещал до 100 Мб информации на недорогой 3,5-дюймовом диске. Формат пришелся по душе демократичной ценой и хорошей емкостью, и диски Zip оставались на гребне популярности до конца 1990-х. Однако на уже появившиеся в то время CD-R можно было записать до 650 Мб, и когда их цена снизилась до нескольких центов за штуку, продажи Zip-дисков катастрофически упали. Iomega сделала попытку спасти технологию и разработала диски размером 250 и 750 Мб, однако CD-R к тому времени уже окончательно завоевали рынок. Так Zip стал историей.

Первую супердискету выпустила компания Insight Peripherals в 1992 году. На 3,5-дюймовом диске вмещалось 21 Мб информации. В отличие от других носителей, этот формат был совместим с более ранними традиционными приводами для 3,5-дюймовых дискет. Секрет высокой эффективности таких накопителей крылся в сочетании гибкого диска и оптики, то есть данные записывались в магнитной среде при помощи лазерной головки, при этом обеспечивалась более точная запись и больше дорожек, соответственно, больше места. В конце 1990-х появились два новых формата — Imation LS-120 SuperDisk (120 Мб, справа внизу) и Sony HiFD (150 Мб, справа вверху). Новинки стали серьезными конкурентами Iomega Zip drive, однако в конечном итоге всех победил формат CD-R.

Бардак в мире портативных носителей

Громкий успех Zip Drive в середине 1990-х породил массу подобных устройств, производители которых надеялись отхватить кусок рынка у Zip. Среди основных конкурентов Iomega можно отметить SyQuest, который сначала раздробил собственный сегмент рынка, а потом погубил свою продуктовую линейку чрезмерным разнообразием — SyJet, SparQ, EZFlyer и EZ135. Еще один серьезный, но «мутный» соперник — Castlewood Orb, придумавший диск наподобие Zip емкостью 2,2 Гб.

Наконец, сама компания Iomega сделала попытку дополнить диск Zip другими типами съемных носителей — от больших съемных винчестеров (1− и 2-гигабайтные Jaz Drive) до миниатюрного Clik drive на 40 Мб. Но ни один не достиг высот Zip.

В начале 1980-х Toshiba придумала флеш-память NAND, однако технология стала популярной только спустя десятилетие, вслед за появлением цифровых камер и PDA. В это время она начинает реализовываться в разных формах — от больших кредитных карт (предназначенных для использования в ранних наладонниках) до карточек CompactFlash, SmartMedia, Secure Digital, Memory Stick и xD Picture Card.

Читайте также:  Драйвер для hp photosmart 7660

Карты флеш-памяти удобны, прежде всего, тем, что в них нет подвижных частей. Кроме этого, они экономичны, прочны и относительно недороги при постоянно увеличивающемся объеме памяти. Первые карточки CF вмещали 2 Мб, сейчас же их емкость достигает 128 Гб.

На промослайде IBM/Hitachi изображен крошечный винчестер Microdrive. Появился он в 2003 году и на какое-то время завоевал сердца компьютерных пользователей.

Дебютировавший в 2001 году iPod и другие медиа-плееры оснащены похожими устройствами на базе вращающегося диска, однако производители быстро разочаровались в таком накопителе: слишком уж он хрупок, энергоемок и мал по объему. Так что этот формат уже почти «похоронен».

В 1998 году началась эпоха USB. Неоспоримое удобство USB-девайсов сделало их практически неотъемлемой частью жизни всех ПК-пользователей. С годами они уменьшаются в физических размерах, но становятся все более емкими и дешевыми. Особенно популярны появившиеся в 2000 году «флешки», или USB thumb drives (от англ. thumb — «большой палец»), названные так за свой размер — с человечески палец. Благодаря большой емкости и маленькому размеру USB-накопители стали, пожалуй, самым лучшим носителем информации, придуманных человечеством.

Переход в виртуальность

На протяжении последних пятнадцати лет локальные сети и интернет постепенно вытесняют портативные носители информации из жизни ПК-пользователей. Поскольку сегодня практически любой компьютер имеет выход в глобальную сеть, пользователям нечасто требуется переносить данные на внешние девайсы или переписывать на другой компьютер. В наше время за перенос информации отвечают провода и электронные сигналы. Беспроводные стандарты Bluetooth и Wi-Fi и вовсе делают физические компьютерные соединения ненужными.

В связи с этим особенно интересно, изживут ли себя когда-нибудь носители информации?

Отправить этот пост в социальные сети и закладки:

Звук — это колебания воздуха, воздействующие на орган слуха человека. Впервые запись и воспроизведение звука осуществил выдающийся американский изобретатель сэр Томас Алва Эдисон (1847—1931) в 1877 г. Он изобрел фонограф — восковой валик, на котором игла фонографа при вращении валика оставляла звуковую дорожку. Звуковые колебания передавались на иглу от мембраны, находящейся в рупоре. Так осуществлялась запись звука. Для воспроизведения звука использовался тот же валик, покрытый путем электролиза металлом. Игла фонографа, двигаясь по канавке, передавала колебательные движения на мембрану и рупор. Так воспроизводился звук. Этот способ записи звука называется механическим. В дальнейшем он был значительно усовершенствован.

В 1888 г. была изобретена грампластинка, и на смену фонографу пришел граммофон. Его изобрел немецкий инженер Эмиль Берлинер. Ему удалось устранить такой недостаток фонографа, как невозможность тиражирования записей. Он отделил запись звука от воспроизведения и создал матрицу для штампования грампластинок.

В это же время французский инженер Шарль Кро предложил портативный вариант граммофона — патефон. Его выпускала в Париже фирма «Пате» (отсюда и название — патефон).

К концу XIX столетия начался век электричества, и в связи с этим изобретатели вели активные поиски новых способов записи звука. В 1888 г. знаменитый русский физик А.Г. Столетов создал первый в мире фотоэлемент. Это открытие позволило русскому ученому А.Ф. Викшемскому разработать в 1889 г. аппарат для оптической записи звука на светочувствительной ленте. Суть изобретения — в преобразовании звуковых колебаний в электрические и затем — в переменные световые. При освещении таким модулированным светом фотобумаги получается фотографическая фонограмма. Затем был найден способ воспроизведения звука с фотографической фонограммы. Его предложил в 1900 г. русский инженер И.Л. Поляков.

В 1928 г. русские ученые П.Г. Тагер и А.Ф. Шорин разработали фотографический способ записи звука на кинопленке. Это изобретение способствовало созданию и развитию звукового кино.

Третий способ записи и воспроизведения звука — магнитный. Его изобрел датский физик В. Паульсен в 1898 г. Он предложил записывать звук на стальную проволоку. Магнитный способ основан на свойстве ферромагнитных материалов намагничиваться под воздействием магнитного поля и сохранять состояние намагниченности при снятии магнитного поля.

В 1928 г. было предложено вместо проволоки использовать бумажную ленту, на которую наносили порошок окиси железа. В дальнейшем бумагу заменили лентой с хлопчатобумажной или лавсановой основой. Такая лента применяется и в современных магнитофонах.

Четвертый способ записи и воспроизведения звука основан на лазерной технологии, реализующей цифровую систему записи и воспроизведения звука. Возможность создания лазера обосновали в 1958 г. американские физики — лауреаты Нобелевской премии Чарльз Таунс и Артур Шавлов.

Новый вид грампластинки — оптический компакт-диск для лазерного проигрывателя появился в США в 1983 г. Вначале это были диски для воспроизведения звука (аудиодиски), а затем, через год, появились видеодиски новой конструкции, вмещающие 250 тыс. страниц текста (что равно объему 500 книг).

В начале 80-х годов традиционные способы записи и воспроизведения звука получили возможность для дальнейшего развития в виде цифровой записи звука, которая реализуется на оптических (лазерных) дисках или на уплотненных (магнитных) дисках.

Читайте также:  Инструкция по эксплуатации стиральной машины margherita 2000

Не нашли то, что искали? Воспользуйтесь поиском:

Идёт приём заявок

Подать заявку

Для учеников 1−11 классов и дошкольников

Звук представляет собой непрерывный сигнал — звуковую волну с меняющейся амплитудой и частотой.

Чем больше амплитуда сигнала, тем он громче для человека.

Чем больше частота сигнала, тем выше тон.

Частота звуковой волны выражается числом колебаний в секунду и измеряется в герцах (Гц, Hz).

Человеческое ухо способно воспринимать звуки в диапазоне от 20 Гц до 20 кГц, который называют звуковым.

Количество бит, отводимое на один звуковой сигнал, называют глубиной кодирования звука.

Современные звуковые карты обеспечивают 16 — , 32 — или 64 -битную глубину кодирования звука.

При кодировании звуковой информации непрерывный сигнал заменяется дискретным, то есть превращается в последовательность электрических импульсов (двоичных нулей и единиц).

Процесс перевода звуковых сигналов от непрерывной формы представления к дискретной, цифровой форме называют оцифровкой.

Важной характеристикой при кодировании звука является частота дискретизации — количество измерений уровней сигнала за 1 секунду:

— 1 (одно) измерение в секунду соответствует частоте 1 Гц;

— 1000 измерений в секунду соответствует частоте 1 кГц.

Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

Количество измерений может лежать в диапазоне от 8 кГц до 48 кГц (от частоты радиотрансляции до частоты, соответствующей качеству звучания музыкальных носителей).

Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Оценить информационный объём моноаудиофайла ( V ) можно следующим образом: V = Nfk , где N — общая длительность звучания (секунд), f — частота дискретизации (Гц), k — глубина кодирования (бит).

Например, при длительности звучания 1 минуту и среднем качестве звука ( 16 бит, 24 кГц):

V = 60 ⋅ 24000 ⋅ 16 бит = 23040000 бит = 2880000 байт = 2812,5 Кбайт = 2,75 Мбайт.

При кодировании стереозвука процесс дискретизации производится отдельно и независимо для левого и правого каналов, что, соответственно, увеличивает объём звукового файла в два раза по сравнению с монозвуком.

Например, оценим информационный объём цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука ( 16 битов, 24000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду и умножить на 2 (стереозвук):

V =16 бит ⋅ 24000 ⋅ 2 = 768000 бит = 96000 байт = 93,75 Кбайт.

Существуют различные методы кодирования звуковой информации двоичным кодом, среди которых можно выделить два основных направления: метод FM и метод Wave-Table.

Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, и, следовательно, может быть описан кодом. Разложение звуковых сигналов в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства — аналогово-цифровые преобразователи (АЦП).

Преобразование звукового сигнала в дискретный сигнал: a — звуковой сигнал на входе АЦП; б — дискретный сигнал на выходе АЦП.

Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). Процесс преобразования звука представлен на рис. ниже. Данный метод кодирования не даёт хорошего качества звучания, но обеспечивает компактный код.

Преобразование дискретного сигнала в звуковой сигнал: а — дискретный сигнал на входе ЦАП; б — звуковой сигнал на выходе ЦАП.

Таблично-волновой метод (Wave-Table) основан на том, что в заранее подготовленных таблицах хранятся образцы звуков окружающего мира, музыкальных инструментов и т. д. Числовые коды выражают высоту тона, продолжительность и интенсивность звука и прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Звуковые файлы имеют несколько форматов. Наиболее популярные из них MIDI, WAV, МРЗ.

Формат MIDI (Musical Instrument Digital Interface) изначально был предназначен для управления музыкальными инструментами. В настоящее время используется в области электронных музыкальных инструментов и компьютерных модулей синтеза.

Формат аудиофайла WAV (waveform) представляет произвольный звук в виде цифрового представления исходного звукового колебания или звуковой волны. Все стандартные звуки Windows имеют расширение WAV.

Формат МРЗ (MPEG-1 Audio Layer 3) — один из цифровых форматов хранения звуковой информации. Он обеспечивает более высокое качество кодирования.