Рассмотрим задачи на нахождение областей в комплексной плоскости, заданных неравенствами. Чтобы решить данные неравенства с комплексными числами, вначале необходимо перейти к декартовым координатам, т.е. перейти к действительному представлению.
Чтобы представить комплексное число в действительной форме, нужно заменить комплексную переменную z действительными переменными x и y, а именно z = x + iy, где
x = Re(z), y = Im(z).
Пример 1. Найти на комплексной плоскости множество точек, удовлетворяющих неравенству
Reshak.ru — сборник решебников для учеников старших классов. Здесь можно найти решебники, ГДЗ, переводы текстов по школьной программе. Практически весь материал, собранный на сайте — сделанный для людей. Все решебники выполнены качественно, с приятной навигацией. Вы сможете скачать гдз, решебник английского, улучшить ваши школьные оценки, повысить знания, получить намного больше свободного времени.
Главная задача сайта: помогать школьникам в решении домашнего задания. Кроме того, весь материал гдз совершенствуется, добавляются новые сборники решений.
Информация
© adminreshak.ru
Разделы: Математика
Цели:
- учащиеся должны уметь изображать на комплексной плоскости множество точек, удовлетворяющих заданным условиям;
- учащиеся должны знать, что геометрическая интерпретация комплексных чисел может быть различной: прямая, часть плоскости, кольцо, параболы, гиперболы, окружности;
- у учащихся должно быть сформировано понятие о связи комплексных чисел и точек координатной плоскости;
- развитие речи и логического мышления.
I. Организационный момент.
II. Устная работа.
III. Основная часть.
IV. Итог урока и домашнее задание.
1. Назовите действительную и мнимую части комплексного числа:
I
— 2i
— — 6i
2. При каком значении X действительная часть комплексного числа равна нулю:
3. Найдите произведение комплексных чисел:
4. Разложите число Z на комплексно сопряженные множитель (а и b — действительные числа):
5. Назовите комплексное число, сопряженное с данным числом:
i
i
6. Найдите модуль комплексного числа:
Устно. Назовите действительную и мнимую части комплексного числа:
3. Imz 0;
4. Rez 0.
Задание № 1. Изобразите на координатной плоскости множество всех комплексных чисел Z, удовлетворяющих заданному условию:
а) действительная часть равна — 2;
б) мнимая часть равна — 3 или 4;
Задание № 2. Изобразите на координатной плоскости множество всех комплексных чисел Z, удовлетворяющих заданному условию:
а) действительная часть на 4 больше мнимой части;
б) сумма действительной и мнимой части равна 4;
в) сумма квадратов действительной и мнимой частей равна 4;
г) квадрат суммы действительной и мнимой частей равен 4.
Устно. Найдите изображение соответствующего множества всех комплексных чисел Z, у которых:
ReZ 2 и (ReZ) 2
ImZ
б) ImZ 2 ReZ или ReZ 25.03.2008