К чему относится число пи

Число Пи — математическая константа, которая выражает отношение длины окружности к её диаметру. Равна приблизительно 3,141592653589793238462643. Обозначается греческой буквой — π .

Некоторые могут подумать, раз это отношение обозначается греческой буквой, стало быть, его вывел некий греческий математик. На самом деле об этом история умалчивает. Зато имеются данные о том, кто впервые использовал в своих работах это обозначение.

Обозначение числа Пи буквой π впервые использовал английский математик (преподаватель) Уильям Джонс в 1706 году в своей работе «Synopsis Palmariorum Matheseos» (что в переводе на русский язык означает «Обозрение достижений математики»). Немного позже швейцарский математик Леонард Эйлер (1707—1783) использовал это обозначение ( π ) в своих работах, получивших всемирное признание. Вскоре после этого появилась тенденция к обозначению числа Пи греческой литерой π .

Все окружности похожи

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C1 C2
=
d1 d2 (1)

где C1 и С2 — длины двух разных окружностей, а d1 и d2 — их диаметры.
Это соотношение работает при наличии коэффициента пропорциональности — уже знакомой нам константы π . Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π :

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

C 2
S = ,
12

где S — площадь круга, C — длина окружности (круга). Если в эту формулу подставить уже знакомые школьнику выражения площади круга S = π r 2 и длины окружности С = 2 π R, то мы получим:

(2 π R) 2
π R 2 =
12

В древнем Египте значение для π было точнее. В 2000—1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

8 2
S = ( d )
9

Из каких соображений он получил эту формулу? — Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

— Какое из двух числе больше 22/7 или 3.14 ?
— Они равны.
— Почему ?
— Каждое из них равно π .
А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: «переложите одну спичку так, чтобы равенство стало верным».

Решение будет таковым: нужно образовать «крышу» для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π .

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют «Архимедовым» числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно — найти узкий числовой промежуток, которому принадлежит значение π . В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

10 6336 14688 1
3 π
71 1 1 7
2017 4673
4 2

можно записать проще: 3,140 909 π π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π , это — формула длины и площади окружности. Первая — формула площади круга — записывается так:

π D 2
S= π R 2 =
4

где S — площадь окружности, R — ее радиус, D — диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

где C — длина окружности, R — радиус, d — диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

C C
R= =
2 π d

Обозначения для этих формул остаются те же.

Диаметр окружности можно найти по формуле:

C
D= =2R
π

где D — диаметр, С — длина окружности, R — радиус окружности.

Читайте также:  Интересные боты в телеграмме

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части — сектора. Поэтому представляем вам её — формулу для вычисления площади сектора окружности. Выглядит она так:

α
S = π R 2
360˚

где S — площадь сектора, R — радиус окружности, α — центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием «Пи». Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют «День числа Пи». К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть — три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

Число π (Пи) является математической константой, первоначально было определено как отношение длины окружности к её диаметру, является иррациональным числом и примерно равно 3.1415926535.

С помощью Пи мы ищем периметр окружности, а Пи называется именно так из-за того, что греческое слово περιμετρο («периметр») начинается именно с этой буквы.

Число Пи используют многие специалисты в своих профессиях, такие как: архитекторы, астрономы, физики, химики и другие.

Число Пи используется не только в математике (периметр), но и в строительстве башен, плотин и мостов, в астрономии — для вычислений орбиты спутника. Также в преобразованиях Фурье (применяется во многих областях науки), для вычисления общей теории относительности и для множества вычислений в статистике и квантовой механике.

Число пи полностью

Пи является иррациональным числом и поэтому имеет бесконечное количество знаков после запятой. С каждым годом разные страны устанавливают новые рекорды по вычислению количества знаков после запятой.

На данный момент науке уже известны более чем 2 триллиона знака после запятой. Неполное число Пи, с одной сотней знаков после запятой представлено далее:

Как получить число π

Разделить длину окружности на её диаметр ( C/d=π )

Для этого возьмите любую окружность (подойдёт любая тарелка или крышка), измерьте длину её окружности © и диаметр (d), а затем разделите первое на второе.

Вычисление Цзу Чунчжи (математик и астроном)

Этот способ очень простой, но даёт только 6 верных цифр после запятой. Вы можете разделить 355 на 113 (Пи≈355/113), это равно 3,1415929204 (а Пи ≈ 3,1415926535. ).

Формула Лейбница для вычисления π

π = (4/1) — (4/3) + (4/5) — (4/7) + (4/9) — (4/11) + (4/13).

Возьмите 4 («разделённое на 1», что даёт 4) и вычтите 4, разделённое на 3. Затем добавьте 4, разделённое на 5. Затем вычтите 4, разделённое на 7.

Продолжайте чередовать сложение и вычитание дробей с числителем 4 и знаменателем каждого последующего нечётного числа.

Чем больше раз вы это сделаете, тем более точное у вас будет значение пи.

История числа Пи

Число Пи известно уже почти 4000 лет. Одна вавилонская табличка (около 1900—1680 гг. до н. э.) указывает, что они обозначали это число как π = 3,125, что уже достаточно точное приближение к современному.

«Папирус Ахмеса» (папирус Ринда или папирус Райнда, около 1650 г. до н. э.) даёт нам представление о математике древнего Египта. Египтяне рассчитывали площадь круга по формуле, по которой приблизительное значение для Пи было 3,1605.

Первое вычисление числа Пи было сделано Архимедом (287−212 гг. до н. э.). Он определил, что истинное значение Пи находится между и .

На протяжении почти тысячи лет самым близким значением числа Пи было вычисление китайского математика и астронома Цзу Чунчжи (429—500 гг.), сделанное в 480-х годах. Он вывел следующее: 3,1415926 Пи 3,1415927 и Пи ≈ 355/113.

На данный момент используется алгоритм Чудновских — это быстрый алгоритм, изобретённый братьями Чудновскими, для вычисления числа π. Он показывает более триллиона знаков после запятой.

В 1700-х годах математики начали использовать греческую букву π, введённую Уильямом Джонсом в 1706 году. Использование символа было популяризировано Леонардом Эйлером, который принял его в 1737 году.

А если бы мы не знали Пи?

Путешествия на автомобиле

Для начала пи позволяет нам точно рассчитывать и создавать окружности. Представьте, что колёса вашей машины немного отличаются друг от друга, каждое слегка смещено от центра. Вы не только будете постоянно тратить кучу денег на механика, но и поездки у вас также будут менее удобными.

Путешествия по воздуху

Пи играет важную роль в расчёте времени и расстояния путешествия на самолёте. Когда самолёты летают на большие расстояния, они летят по округлой дуге потому что, Земля круглая.

Читайте также:  Ваши гости и поклонники в контакте

Ни телевизора, ни радио, ни телефонов

Инженеры используют пи для расчёта и оптимизации звуковых волн.

Казино

Всеми любимая формула нормального распределения (также называемая распределением Гаусса) считается с помощью пи. Проще говоря: пи играет ключевую роль в формулах по теории вероятности и статистике — поэтому с пи азартные игры становятся намного более предсказуемыми. И с этими расчётами люди открывают казино, зная наверняка, какой процент их клиентов будет выигрывать и проигрывать.

Не было бы многих игр, ведь футбольные, баскетбольные, теннисные и другие мячи должны быть абсолютно круглыми.

Число Пи интересные факты

Число π по-английски произносится «пай» — это означает пирог, а слово пирог по-русски начинается с «пи».

Число Пи имеет два неофициальных праздника в году: первый — 14 марта (в США эта дата записывается как 3.14), вторая — 22 июля (22/7 : деление 22 на 7 является приблизительным результатом Пи).

Станислав Улам, польский и американский математик, в 1965 году, написал на бумаге в клетку цифры, входящие в число пи. Он поставил в центре 3 и двигался по спирали против часовой стрелки, записывая числа после запятой, при этом он обводил все простые числа кружками.

Он пришёл одновременно в удивление и ужас, заметив, что кружки выстраивались вдоль прямых. После, с помощью специального алгоритма, математик сделал на основе этого рисунка цветовую картину, которую называют «Скатерть Улама».

Число Пи можно даже играть на музыкальном инструменте поставив ноты в его порядке.

Числу «Пи» поставили несколько памятников по всему миру.

Существует стиль письма, который называется «пилиш» (от «пи», английский «pilish»), в котором длина последовательных слов соответствует цифрам числа πи. В первом слове произведения должно быть 3 буквы, во втором — одна, потом — четыре, следом — опять одна, затем пять, и так далее по цифрам π.

Например, такая поэма на английском языке:

Delicious (9) pi (2),

Как запомнить число π

Один из самых популярных способов — это запомнить фразу, а затем посчитать количество букв в каждом слове.

Например, такие фразы:

  • Что я знаю о кругах? (3.1415);
  • Она и была, и будет уважаемая на работе (3,1415926);
  • Это я знаю и помню прекрасно — пи, многие знаки мне лишни, напрасны (3,14159265358).

Для того чтобы запомнить число Пи, также можно выучить небольшое стихотворение из книги Сергея Боброва «Волшебный двурог»:

Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс (1706), а общепринятым оно стало после работ Эйлера. Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

Оценки

  • (Архимед),
  • (дана в книге индийского мыслителя и астронома Арьябхаты в V веке н. э.),
  • (оценка приписывается современнику Арьябхаты древнекитайскому астроному Цзу Чун-цжи).
  • 510 знаков после запятой: π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…
  • Сто миллиардов знаков после запятой (2000
  • PI world of JA0HXV

Свойства

Соотношения

Известно много формул с числом π :

  • Франсуа Виет, 1593:

  • Формула Валлиса:

  • Ряд Лейбница:

  • Тождество Эйлера:

  • Т. н. «интеграл Пуассона» или «интеграл Гаусса»

  • Интегральный синус

Трансцендентность и иррациональность

  • Иррациональность числа π была впервые доказана Иоганном Ламбертом в 1767 году путём разложения числа в непрерывную дробь. В 1794-м Лежандр привёл более строгое доказательство иррациональности чисел π и π 2 .
  • В 1882 г.профессоруКёнигсбергского, позже МюнхенскогоуниверситетовФердинанду Линдеману удалось доказать трансцендентность числа π . Доказательство упростил Феликс Клейн в 1894 г.[1]
  • Поскольку в геометрииЕвклидаплощадькруга и длинаокружности являются функциями числа π , то доказательство трансцендентности π положило конец спору о квадратуре круга, длившемуся более 2,5 тысяч лет.

Нерешенные проблемы

  • Неизвестно, являются ли числа π и e алгебраически независимыми.
  • Неизвестно, являются ли числа π + e , π — e , πe , π / e , π e , π π , ee трансцендентными.
  • До сих пор ничего не известно о нормальности числа π ; неизвестно даже, какие из цифр 0−9 встречаются в десятичном представлении числа π бесконечное количество раз.
Читайте также:  Болит ухо после наушников что делать

История вычисления

Архимед, возможно, первым предложил способ вычисления π математическим способом. Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Так, для шестиугольника (см. рисунок) получается .

Рассматривая правильный 96-угольник, Архимед получил оценку .

В древнекитайских трудах попадаются самые разные оценки, из которых самая точная — это известное китайское число 355/113. Цзу Чунчжи (V век) даже считал это значение точным.

В Индии Арьябхата и Бхаскара использовали приближение 3,1416

Заслуживает упоминания результат арабского математика Гиясэддина Джемшид ибн Масуд ал-Каши, завершившего в 1424 году труд под названием «Трактат об окружности», в котором он приводит 17 цифр числа π (из них 16 верных).

Лудольф ван Цейлен (1536—1610) затратил десять лет на вычисление числа π с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n=60·2 29 . Изложив свои результаты в сочинении «Об окружности» («Van den Cirkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа π . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число π иногда называли «лудольфовым числом», или «константой Лудольфа».

В Новое время для вычисления π используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 Джон Мэчин (John Machin):

Разложив арктангенс в ряд Тейлора, можно получить быстро сходящийся ряд, пригодный для вычисления числа π с большой точностью. Эйлер, автор обозначения π , получил 153 верных знака.

В 1873 году англичанин В. Шенкс потратил 15 лет и вычислил 707 знаков; правда, начиная с 527-го знака, все они оказались ошибочными. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков π .

Очень быстро работают вычислительные алгоритмы, основанные на формулах Рамануджана

В 1997 году Дэйвид Х. Бэйли, Питер Боруэйн и Саймон Плуфф открыли способ быстрого вычисления произвольной двоичной цифры числа π без вычисления предыдущих цифр, основанный на формуле

Метод иглы Бюффона

На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности. Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло. [2]

Мнемонические правила

Чтобы нам не ошибаться, Надо правильно прочесть: Три, четырнадцать, пятнадцать, Девяносто два и шесть. Надо только постараться И запомнить всё как есть: Три, четырнадцать, пятнадцать, Девяносто два и шесть. Три, четырнадцать, пятнадцать, Девять, два, шесть, пять, три, пять. Чтоб наукой заниматься, Это каждый должен знать. Можно просто постараться И почаще повторять: «Три, четырнадцать, пятнадцать, Девять, двадцать шесть и пять.»

2. Подсчитайте количество букв в каждом слове в нижеприведенных фразах (без учета знаков препинания) и запишите эти цифры подряд — не забывая про десятичную запятую после первой цифры «3», разумеется. Получится приближенное число Пи.

Это я знаю и помню прекрасно: Пи многие знаки мне лишни, напрасны.

Кто и шутя, и скоро пожелаетъ Пи узнать число — ужъ знаетъ!

Вот и Миша и Анюта прибежали Пи узнать число они желали.

(Вторая мнемоническая запись верна (с округлением последнего разряда) только при использовании дореформенной орфографии: при подсчете количества букв в словах необходимо учитывать твердые знаки!)

Еще один вариант этой мнемонической записи:

Это я знаю и помню прекрасно:
Пи многие знаки мне лишни, напрасны.
Доверимся знаньям громадным
Тех, пи кто сосчитал, цифр армаду.

Раз у Коли и Арины Распороли мы перины. Белый пух летал, кружился, Куражился, замирал, Ублажился, Нам же дал Головную боль старух. Ух, опасен пуха дух!

Если соблюдать стихотворный размер, можно довольно быстро запомнить:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пять
Восемь девять, семь и девять, три два, три восемь, сорок шесть
Два шесть четыре, три три восемь, три два семь девять, пять ноль два
Восемь восемь и четыре, девятнадцать, семь, один