Как возвести число под корень

Степенью называется выражение вида .

Здесь — основание степени, — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

Возвести число в куб — значит умножить его само на себя три раза.

Возвести число в натуральную степень — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

Это верно для . Выражение 0 0 не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где — целое, — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень из числа — это такое неотрицательное число, квадрат которого равен .

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение для нас сейчас имеет смысл только при .

Выражение всегда неотрицательно, т.е. . Например, .

Свойства арифметического квадратного корня:

Кубический корень

Аналогично, кубический корень из — это такое число, которое при возведении в третью степень дает число .

Например, , так как ;

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

Корень -ной степени

Корень -ной степени из числа — это такое число, при возведении которого в -ную степень получается число .

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

Сразу договоримся, что основание степени больше 0.

Выражение по определению равно .

При этом также выполняется условие, что больше 0.

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Звоните нам: 8 (800) 775−06−82 (бесплатный звонок по России) +7 (495) 984−09−27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13−19). Длительность каждого курса — от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60−65 баллов. Полностью все задачи 1−13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90−100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Читайте также:  Как вконтакте добавить сестру

Курс подготовки к ЕГЭ для 10−11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги — 2019» непростые. В каждой — интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось — начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5−7 задач — значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор — в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги — 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Онлайн калькулятор

Как посчитать корень. Теория

Извлечение корня — это обратная операция от возведения в степень. Корень n-й степени из числа a является числом b, которое можно возвести в эту степень (b n ) и получить число а.

Формула

n √ a = b при этом b n = a

Пример

К примеру, извлечём корень 3-й степени из числа 8:

3 √ 8 = 2 , теперь проверим 2 3 = 2⋅2⋅2 = 8

Можно ли извлекать корень из отрицательного числа?

Извлечение корня из отрицательного числа невозможно, если речь идёт о квадратном корне, либо о любом другом с четной степенью, так как любое число (даже отрицательное), возведённое в любую четную степень будет положительным. При этом, например, квадратный корень из 4 может быть равен как +2, как и −2.

Извлечь корень с нечетной степенью из отрицательного числа вполне возможно. Например:

3 √ −8 = −2 , так как −2³ = −2⋅(-2)⋅(-2) = 4⋅(-2) = −8

Готовиться с нами — ЛЕГКО!

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Факт 1.
(ullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0) ). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b) , при возведении которого в квадрат мы получим число (a) : [sqrt a=bquad ext<то же самое, что >quad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0) .
(ullet) Чему равен (sqrt<25>) ? Мы знаем, что (5^2=25) и ((-5)^2=25) . Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt<25>=5) (так как (25=5^2) ).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a) , а число (a) называется подкоренным выражением.
(ullet) Исходя из определения, выражения (sqrt<-25>) , (sqrt<-4>) и т.п. не имеют смысла.

Читайте также:  Используйте автоматический режим ввода

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20) : [egin <|ll|>hline 1^2=1 & quad11^2=121 \ 2^2=4 & quad12^2=144\ 3^2=9 & quad13^2=169\ 4^2=16 & quad14^2=196\ 5^2=25 & quad15^2=225\ 6^2=36 & quad16^2=256\ 7^2=49 & quad17^2=289\ 8^2=64 & quad18^2=324\ 9^2=81 & quad19^2=361\ 10^2=100& quad20^2=400\ hline end]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
(ullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt b
e sqrt] Таким образом, если вам нужно вычислить, например, (sqrt<25>+sqrt<49>) , то первоначально вы должны найти значения (sqrt<25>) и (sqrt<49>) , а затем их сложить. Следовательно, [sqrt<25>+sqrt<49>=5+7=12] Если значения (sqrt a) или (sqrt b) при сложении (sqrt a+sqrt b) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме (sqrt 2+ sqrt <49>) мы можем найти (sqrt<49>) — это (7) , а вот (sqrt 2) никак преобразовать нельзя, поэтому (sqrt 2+sqrt<49>=sqrt 2+7) . Дальше это выражение, к сожалению, упростить никак нельзя (ullet) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть [sqrt acdot sqrt b=sqrtquad ext<и>quad sqrt a:sqrt b=sqrt] (при условии, что обе части равенств имеют смысл)
Пример: (sqrt<32>cdot sqrt 2=sqrt<32cdot 2>=sqrt<64>=8) ; (sqrt<768>:sqrt3=sqrt<768:3>=sqrt<256>=16) ; (sqrt<(-25)cdot (-64)>=sqrt<25cdot 64>=sqrt<25>cdot sqrt<64>= 5cdot 8=40) . (ullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt<44100>) . Так как (44100:100=441) , то (44100=100cdot 441) . По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49) , то есть (441=9cdot 49) .
Таким образом, мы получили: [sqrt<44100>=sqrt<9cdot 49cdot 100>= sqrt9cdot sqrt<49>cdot sqrt<100>=3cdot 7cdot 10=210] Рассмотрим еще один пример: [sqrt<dfrac<32cdot 294><27>>= sqrt<dfrac<16cdot 2cdot 3cdot 49cdot 2><9cdot 3>>= sqrt< dfrac<16cdot4cdot49><9>>=dfrac<sqrt<16>cdot sqrt4 cdot sqrt<49>><sqrt9>=dfrac<4cdot 2cdot 7>3=dfrac<56>3]
(ullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot sqrt2) ). Так как (5=sqrt<25>) , то [5sqrt2=sqrt<25>cdot sqrt2=sqrt<25cdot 2>=sqrt<50>] Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2) ,
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число (sqrt2) мы не можем. Представим, что (sqrt2) — это некоторое число (a) . Соответственно, выражение (sqrt2+3sqrt2) есть не что иное, как (a+3a) (одно число (a) плюс еще три таких же числа (a) ). А мы знаем, что это равно четырем таким числам (a) , то есть (4sqrt2) .

Факт 4.
(ullet) Часто говорят «нельзя извлечь корень», когда не удается избавиться от знака (sqrt <> ) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа (16) можно, потому что (16=4^2) , поэтому (sqrt<16>=4) . А вот извлечь корень из числа (3) , то есть найти (sqrt3) , нельзя, потому что нет такого числа, которое в квадрате даст (3) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа (sqrt3, 1+sqrt2, sqrt<15>) и т.п. являются иррациональными.
Также иррациональными являются числа (pi) (число «пи», приблизительно равное (3,14) ), (e) (это число называют числом Эйлера, приблизительно оно равно (2,7) ) и т.д.
(ullet) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой (mathbb) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
(ullet) Модуль вещественного числа (a) — это неотрицательное число (|a|) , равное расстоянию от точки (a) до (0) на вещественной прямой. Например, (|3|) и (|-3|) равны 3, так как расстояния от точек (3) и (-3) до (0) одинаковы и равны (3) .
(ullet) Если (a) — неотрицательное число, то (|a|=a) .
Пример: (|5|=5) ; (qquad |sqrt2|=sqrt2) . (ullet) Если (a) — отрицательное число, то (|a|=-a) .
Пример: (|-5|=- (-5)=5) ; (qquad |-sqrt3|=- (-sqrt3)=sqrt3) .
Говорят, что у отрицательных чисел модуль «съедает» минус, а положительные числа, а также число (0) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная (x) (или какая-то другая неизвестная), например, (|x|) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: (|x|) . (ullet) Имеют место следующие формулы: [<large<sqrt=|a|>>] [<large<(sqrt)^2=a>>, ext < при условии >ageqslant 0] Очень часто допускается такая ошибка: говорят, что (sqrt) и ((sqrt a)^2) — одно и то же. Это верно только в том случае, когда (a) — положительное число или ноль. А вот если (a) — отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо (a) число (-1) . Тогда (sqrt<(-1)^2>=sqrt<1>=1) , а вот выражение ((sqrt <-1>)^2) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что (sqrt) не равен ((sqrt a)^2) ! Пример: 1) (sqrt<left(-sqrt2
ight)^2>=|-sqrt2|=sqrt2) , т.к. (-sqrt2 ;

Читайте также:  Использовать факс как принтер

(phantom<00000>) 2) ((sqrt<2>)^2=2) . (ullet) Так как (sqrt=|a|) , то [sqrt<2n>>=|a^n|] (выражение (2n) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) (sqrt<4^6>=|4^3|=4^3=64)
2) (sqrt<(-25)^2>=|-25|=25) (заметим, что если модуль не поставить, то получится, что корень из числа равен (-25) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) (sqrt
>=|x^8|=x^8) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
(ullet) Для квадратных корней верно: если (sqrt a , то (a ; если (sqrt a=sqrt b) , то (a=b) .
Пример:
1) сравним (sqrt<50>) и (6sqrt2) . Для начала преобразуем второе выражение в (sqrt<36>cdot sqrt2=sqrt<36cdot 2>=sqrt<72>) . Таким образом, так как (50 , то и (sqrt <50>. Следовательно, (sqrt <50>.
2) Между какими целыми числами находится (sqrt<50>) ?
Так как (sqrt<49>=7) , (sqrt<64>=8) , а (49 , то (7 , то есть число (sqrt<50>) находится между числами (7) и (8) .
3) Сравним (sqrt 2−1) и (0,5) . Предположим, что (sqrt2−1>0,5) : [egin &sqrt 2-1>0,5 ig| +1quad ext<(прибавим единицу к обеим частям)>\[1ex] &sqrt2>0,5+1 ig| ^2 quad ext<(возведем обе части в квадрат)>\[1ex] &2>1,5^2\ &2>2,25 end] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и (sqrt 2−1 .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве (-3 нельзя (убедитесь в этом сами)! (ullet) Следует запомнить, что [egin
&sqrt 2approx 1,4\[1ex] &sqrt 3approx 1,7 end] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! (ullet) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими «сотнями» оно находится, затем — между какими «десятками», а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем (sqrt<28224>) . Мы знаем, что (100^2=10,000) , (200^2=40,000) и т.д. Заметим, что (28224) находится между (10,000) и (40,000) . Следовательно, (sqrt<28224>) находится между (100) и (200) .
Теперь определим, между какими «десятками» находится наше число (то есть, например, между (120) и (130) ). Также из таблицы квадратов знаем, что (11^2=121) , (12^2=144) и т.д., тогда (110^2=12100) , (120^2=14400) , (130^2=16900) , (140^2=19600) , (150^2=22500) , (160^2=25600) , (170^2=28900) . Таким образом, мы видим, что (28224) находится между (160^2) и (170^2) . Следовательно, число (sqrt<28224>) находится между (160) и (170) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце (4) ? Это (2^2) и (8^2) . Следовательно, (sqrt<28224>) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем (162^2) и (168^2) :
(162^2=162cdot 162=26224)
(168^2=168cdot 168=28224) .
Следовательно, (sqrt<28224>=168) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.