Как возвести число в степень дроби

Please enable cookies

This website is using a security service to protect itself from online attacks. The service requires full cookie support in order to view the website.

Please enable cookies on your browser and try again.

This website is using a security service to protect itself from online attacks.

This process is automatic, you will be redirected to the requested URL once the validation process is complete.

В продолжение разговора про степень числа логично разобраться с нахождением значения степени. Этот процесс получил название возведение в степень. В этой статье мы как раз изучим, как выполняется возведение в степень, при этом затронем все возможные показатели степени — натуральный, целый, рациональный и иррациональный. И по традиции подробно рассмотрим решения примеров возведения чисел в различные степени.

Навигация по странице.

Что значит «возведение в степень»?

Начать следует с объяснения, что называют возведением в степень. Вот соответствующее определение.

Возведение в степень — это нахождение значения степени числа.

Таким образом, нахождение значение степени числа a с показателем r и возведение числа a в степень r — это одно и то же. Например, если поставлена задача «вычислите значение степени (0,5) 5 », то ее можно переформулировать так: «Возведите число 0,5 в степень 5 ».

Теперь можно переходить непосредственно к правилам, по которым выполняется возведение в степень.

Возведение числа в натуральную степень

По определению степень числа a с натуральным показателем n равна произведению n множителей, каждый из которых равен a , то есть, . Таким образом, чтобы возвести число a в степень n нужно вычислить произведение вида .

Отсюда ясно, что возведение в натуральную степень базируется на умении выполнять умножение чисел, а этот материал охвачен в статье умножение действительных чисел. Рассмотрим решения нескольких примеров.

Выполните возведение числа −2 в четвертую степень.

По определению степени числа с натуральным показателем имеем (-2) 4 =(-2)·(-2)·(-2)·(-2) . Осталось лишь выполнить умножение целых чисел: (-2)·(-2)·(-2)·(-2)=16 .

Найдите значение степени .

Данная степень равна произведению вида . Вспомнив, как выполняется умножение смешанных чисел, заканчиваем возведение в степень: .

.

Что касается возведения в натуральную степень иррациональных чисел, то его проводят после предварительного округления основания степени до некоторого разряда, позволяющего получить значение с заданной степенью точности. Например, пусть нам требуется возвести число пи в квадрат. Если округлить число пи до сотых, то получим , а если взять , то возведение в степень даст .

Здесь стоит сказать, что во многих задачах нет необходимости возводить в степень иррациональные числа. Обычно ответ записывается либо в виде самой степени, например, , либо по возможности проводится преобразование выражения: .

В заключение этого пункта отдельно остановимся на возведении в первую степень. Здесь достаточно знать, что число a в первой степени — это есть само число a , то есть, . Это есть частный случай формулы при n=1 .

Например, (-9) 1 =-9 , а число в первой степени равно .

Возведение в целую степень

Возведение в целую степень удобно рассматривать для трех случаев: для целых положительных показателей, для нулевого показателя, и для целых отрицательных показателей степени.

Так как множество целых положительных чисел совпадает со множеством натуральных чисел, то возведение в целую положительную степень есть возведение в натуральную степень. А этот процесс мы рассмотрели в предыдущем пункте.

Переходим к возведению в нулевую степень. В статье степень с целым показателем мы выяснили, что нулевая степень числа a определяется для любого отличного от нуля действительного числа a , при этом a 0 =1 .

Читайте также:  Выбор акустической гитары форум

Таким образом, возведение любого отличного от нуля действительного числа в нулевую степень дает единицу. Например, 5 0 =1 , (-2,56) 0 =1 и , а 0 0 не определяется.

Чтобы закончить с возведением в целую степень, осталось разобраться со случаями целых отрицательных показателей. Мы знаем, что степень числа a с целым отрицательным показателем -z определяется как дробь вида . В знаменателе этой дроби находится степень с целым положительным показателем, значение которой мы умеем находить. Осталось лишь рассмотреть несколько примеров возведения в целую отрицательную степень.

Вычислите значение степени числа 3 с целым отрицательным показателем −2 .

По определению степени с целым отрицательным показателем имеем . Значение степени в знаменателе легко находится: 2 3 =2·2·2=8 . Таким образом, .

.

Найдите значение степени (1,43) −2 .

. Значение квадрата в знаменателе равно произведению 1,43·1,43 . Найдем его значение, выполнив умножение десятичных дробей столбиком:

Итак, . Запишем полученное число в виде обыкновенной дроби, умножив числитель и знаменатель полученной дроби на 10 000 (при необходимости смотрите преобразование дробей), имеем .

На этом возведение в степень завершено.

.

В заключение этого пункта стоит отдельно остановиться на возведении в степень −1 . Минус первая степень числа a равна числу, обратному числу a . Действительно, . Например, 3 −1 =1/3 , и .

Возведение числа в дробную степень

Возведение числа в дробную степень базируется на определении степени с дробным показателем. Известно, что , где a — любое положительное число, m — целое, а n — натуральное число. Так возведение числа a в дробную степень m/n заменяется двумя действиями: возведением в целую степень (о чем мы говорили в предыдущем пункте) и извлечением корня n-ой степени.

На практике равенство на основании свойств корней обычно применяется в виде . То есть, при возведении числа a в дробную степень m/n сначала извлекается корень n -ой степени из числа a , после чего полученный результат возводится в целую степень m .

Рассмотрим решения примеров возведения в дробную степень.

Вычислите значение степени .

Покажем два способа решения.

Первый способ. По определению степени с дробным показателем . Вычисляем значение степени под знаком корня, после чего извлекаем кубический корень: .

Второй способ. По определению степени с дробным показателем и на основании свойств корней справедливы равенства . Теперь извлекаем корень , наконец, возводим в целую степень .

Очевидно, что полученные результаты возведения в дробную степень совпадают.

.

Отметим, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, в этих случаях его следует заменить соответствующей обыкновенной дробью, после чего выполнять возведение в степень.

Вычислите (44,89) 2,5 .

Запишем показатель степени в виде обыкновенной дроби (при необходимости смотрите статью перевод десятичных дробей в обыкновенные): . Теперь выполняем возведение в дробную степень:

(44,89) 2,5 =13 501,25107 .

Следует также сказать, что возведение чисел в рациональные степени является достаточно трудоемким процессом (особенно когда в числителе и знаменателе дробного показателя степени находятся достаточно большие числа), который обычно проводится с использованием вычислительной техники.

В заключение этого пункта остановимся на возведении числа нуль в дробную степень. Дробной степени нуля вида мы придали следующий смысл: при имеем , а при нуль в степени m/n не определен. Итак, нуль в дробной положительной степени равен нулю, например, . А нуль в дробной отрицательной степени не имеет смысла, к примеру, не имеют смысла выражения и 0 −4,3 .

Возведение в иррациональную степень

Иногда возникает необходимость узнать значение степени числа с иррациональным показателем. При этом в практических целях обычно достаточно получить значение степени с точностью до некоторого знака. Сразу отметим, что это значение на практике вычисляется с помощью электронной вычислительной техники, так как возведение в иррациональную степень вручную требует большого количества громоздких вычислений. Но все же опишем в общих чертах суть действий.

Чтобы получить приближенное значение степени числа a с иррациональным показателем , берется некоторое десятичное приближение показателя степени , и вычисляется значение степени . Это значение и является приближенным значением степени числа a с иррациональным показателем . Чем более точное десятичное приближение числа будет взято изначально, тем более точное значение степени будет получено в итоге.

Читайте также:  Блок управления вентиляторами компьютера

В качестве примера вычислим приближенное значение степени 2 1,174367. . Возьмем следующее десятичное приближение иррационального показателя: . Теперь возведем 2 в рациональную степень 1,17 (суть этого процесса мы описали в предыдущем пункте), получаем 2 1,17 ≈2,250116 . Таким образом, 2 1,174367. ≈2 1,17 ≈2,250116 . Если взять более точное десятичное приближение иррационального показателя степени, например, , то получим более точное значение исходной степени: 2 1,174367. ≈2 1,1743 ≈2,256833 .

Мы разобрались, что вообще из себя представляет степень числа. Теперь нам надо понять, как правильно выполнять ее вычисление, т.е. возводить числа в степень. В этом материале мы разберем основные правила вычисления степени в случае целого, натурального, дробного, рационального и иррационального показателя. Все определения будут проиллюстрированы примерами.

Понятие возведения в степень

Начнем с формулирования базовых определений.

Возведение в степень — это вычисление значения степени некоторого числа.

То есть слова «вычисление значение степени» и «возведение в степень» означают одно и то же. Так, если в задаче стоит «Возведите число 0 , 5 в пятую степень», это следует понимать как "вычислите значение степени ( 0 , 5 ) 5 .

Теперь приведем основные правила, которым нужно придерживаться при таких вычислениях.

Как возвести число в натуральную степень

Вспомним, что такое степень числа с натуральным показателем. Для степени с основанием a и показателем n это будет произведение n -ного числа множителей, каждый из которых равен a . Это можно записать так:

Чтобы вычислить значение степени, нужно выполнить действие умножения, то есть перемножить основания степени указанное число раз. На умении быстро умножать и основано само понятие степени с натуральным показателем. Приведем примеры.

Условие: возведите — 2 в степень 4 .

Решение

Используя определение выше, запишем: ( — 2 ) 4 = ( — 2 ) · ( — 2 ) · ( — 2 ) · ( — 2 ) . Далее нам нужно просто выполнить указанные действия и получить 16 .

Возьмем пример посложнее.

Вычислите значение 3 2 7 2

Решение

Данную запись можно переписать в виде 3 2 7 · 3 2 7 . Ранее мы рассматривали, как правильно умножать смешанные числа, упомянутые в условии.

Выполним эти действия и получим ответ: 3 2 7 · 3 2 7 = 23 7 · 23 7 = 529 49 = 10 39 49

Если в задаче указана необходимость возводить иррациональные числа в натуральную степень, нам потребуется предварительно округлить их основания до разряда, который позволит нам получить ответ нужной точности. Разберем пример.

Выполните возведение в квадрат числа π .

Решение

Для начала округлим его до сотых. Тогда π 2 ≈ ( 3 , 14 ) 2 = 9 , 8596 . Если же π ≈ 3 . 14159 , то мы получим более точный результат: π 2 ≈ ( 3 , 14159 ) 2 = 9 , 8695877281 .

Отметим, что необходимость высчитывать степени иррациональных чисел на практике возникает сравнительно редко. Мы можем тогда записать ответ в виде самой степени ( ln 6 ) 3 или преобразовать, если это возможно: 5 7 = 125 5 .

Отдельно следует указать, что такое первая степень числа. Тут можно просто запомнить, что любое число, возведенное в первую степень, останется самим собой:

Это понятно из записи .

От основания степени это не зависит.

Так, ( — 9 ) 1 = — 9 , а 7 3 , возведенное в первую степень, останется равно 7 3 .

Как возвести число в целую степень

Для удобства разберем отдельно три случая: если показатель степени — целое положительное число, если это ноль и если это целое отрицательное число.

В первое случае это то же самое, что и возведение в натуральную степень: ведь целые положительные числа принадлежат ко множеству натуральных. О том, как работать с такими степенями, мы уже рассказали выше.

Теперь посмотрим, как правильно возводить в нулевую степень. При основании, которое отличается от нуля, это вычисление всегда дает на выходе 1 . Ранее мы уже поясняли, что 0 -я степень a может быть определена для любого действительного числа, не равного 0 , и a 0 = 1 .

5 0 = 1 , ( — 2 , 56 ) 0 = 1 2 3 0 = 1

0 0 — не определен.

У нас остался только случай степени с целым отрицательным показателем. Мы уже разбирали, что такие степени можно записать в виде дроби 1 a z , где а — любое число, а z — целый отрицательный показатель. Мы видим, что знаменатель этой дроби есть не что иное, как обыкновенная степень с целым положительным показателем, а ее вычислять мы уже научились. Приведем примеры задач.

Читайте также:  Игра для развития печати на клавиатуре

Возведите 2 в степень — 3 .

Решение

Используя определение выше, запишем: 2 — 3 = 1 2 3

Подсчитаем знаменатель этой дроби и получим 8 : 2 3 = 2 · 2 · 2 = 8 .

Тогда ответ таков: 2 — 3 = 1 2 3 = 1 8

Возведите 1 , 43 в степень — 2 .

Решение

Переформулируем: 1 , 43 — 2 = 1 ( 1 , 43 ) 2

Вычисляем квадрат в знаменателе: 1,43·1,43. Десятичные дроби можно умножить таким способом:

В итоге у нас вышло ( 1 , 43 ) — 2 = 1 ( 1 , 43 ) 2 = 1 2 , 0449 . Этот результат нам осталось записать в виде обыкновенной дроби, для чего необходимо умножить ее на 10 тысяч (см. материал о преобразовании дробей).

Ответ: ( 1 , 43 ) — 2 = 10000 20449

Отдельный случай — возведение числа в минус первую степень. Значение такой степени равно числу, обратному исходному значению основания: a — 1 = 1 a 1 = 1 a .

Пример: 3 — 1 = 1 / 3

9 13 — 1 = 13 9 6 4 — 1 = 1 6 4 .

Как возвести число в дробную степень

Для выполнения такой операции нам потребуется вспомнить базовое определение степени с дробным показателем: a m n = a m n при любом положительном a , целом m и натуральном n .

Таким образом, вычисление дробной степени нужно выполнять в два действия: возведение в целую степень и нахождение корня n -ной степени.

У нас есть равенство a m n = a m n , которое, учитывая свойства корней, обычно применяется для решения задач в виде a m n = a n m . Это значит, что если мы возводим число a в дробную степень m / n , то сначала мы извлекаем корень n -ной степени из а , потом возводим результат в степень с целым показателем m .

Проиллюстрируем на примере.

Вычислите 8 — 2 3 .

Решение

Способ 1. Согласно основному определению, мы можем представить это в виде: 8 — 2 3 = 8 — 2 3

Теперь подсчитаем степень под корнем и извлечем корень третьей степени из результата: 8 — 2 3 = 1 64 3 = 1 3 3 64 3 = 1 3 3 4 3 3 = 1 4

Способ 2. Преобразуем основное равенство: 8 — 2 3 = 8 — 2 3 = 8 3 — 2

После этого извлечем корень 8 3 — 2 = 2 3 3 — 2 = 2 — 2 и результат возведем в квадрат: 2 — 2 = 1 2 2 = 1 4

Видим, что решения идентичны. Можно пользоваться любым понравившимся способом.

Бывают случаи, когда степень имеет показатель, выраженный смешанным числом или десятичной дробью. Для простоты вычислений его лучше заменить обычной дробью и считать, как указано выше.

Возведите 44 , 89 в степень 2 , 5 .

Решение

Преобразуем значение показателя в обыкновенную дробь — 44 , 89 2 , 5 = 49 , 89 5 2 .

А теперь выполняем по порядку все действия, указанные выше: 44 , 89 5 2 = 44 , 89 5 = 44 , 89 5 = 4489 100 5 = 4489 100 5 = 67 2 10 2 5 = 67 10 5 = = 1350125107 100000 = 13 501 , 25107

Ответ: 13 501 , 25107 .

Если в числителе и знаменателе дробного показателя степени стоят большие числа, то вычисление таких степеней с рациональными показателями — довольно сложная работа. Для нее обычно требуется вычислительная техника.

Отдельно остановимся на степени с нулевым основанием и дробным показателем. Выражению вида 0 m n можно придать такой смысл: если m n > 0 , то 0 m n = 0 m n = 0 ; если m n 0 нуль остается не определен. Таким образом, возведение нуля в дробную положительную степень приводит к нулю: 0 7 12 = 0 , 0 3 2 5 = 0 , 0 0 , 024 = 0 , а в целую отрицательную — значения не имеет: 0 — 4 3 .

Как возвести число в иррациональную степень

Необходимость вычислить значение степени, в показателе которой стоит иррациональное число, возникает не так часто. На практике обычно задача ограничивается вычислением приблизительного значения (до некоторого количества знаков после запятой). Обычно это считают на компьютере из-за сложности таких подсчетов, поэтому подробно останавливаться на этом не будем, укажем лишь основные положения.

Если нам нужно вычислить значение степени a с иррациональным показателем a , то мы берем десятичное приближение показателя и считаем по нему. Результат и будет приближенным ответом. Чем точнее взятое десятичное приближение, тем точнее ответ. Покажем на примере:

Вычислите приближенное значение 21 , 174367 .

Решение

Ограничимся десятичным приближением a n = 1 , 17 . Проведем вычисления с использованием этого числа: 2 1 , 17 ≈ 2 , 250116 . Если же взять, к примеру, приближение a n = 1 , 1743 , то ответ будет чуть точнее: 2 1 , 174367 . . . ≈ 2 1 , 1743 ≈ 2 , 256833 .