Как возвести в квадрат три слагаемых

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Формулы сокращенного умножения. Таблица

Впервые тема ФСУ рассматривается в рамках курса «Алгебра» за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a — b 2 = a 2 — 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3
  5. формула разности квадратов: a 2 — b 2 = a — b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 — a b + b 2
  7. формула разности кубов: a 3 — b 3 = a — b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы — соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.

Во-первых, рассмотрим формулу бинома Ньютона.

a + b n = C n 0 · a n + C n 1 · a n — 1 · b + C n 2 · a n — 2 · b 2 + . . + C n n — 1 · a · b n — 1 + C n n · b n

Здесь C n k — биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля. Биномиальные коэффициенты вычисляются по формуле:

C n k = n ! k ! · ( n — k ) ! = n ( n — 1 ) ( n — 2 ) . . ( n — ( k — 1 ) ) k !

Как видим, ФСУ для квадрата и куба разности и суммы — это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Читайте также:  Как войти в почту outlook с телефона

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a 1 + a 2 + . . + a n 2 = a 1 2 + a 2 2 + . . + a n 2 + 2 a 1 a 2 + 2 a 1 a 3 + . . + 2 a 1 a n + 2 a 2 a 3 + 2 a 2 a 4 + . . + 2 a 2 a n + 2 a n — 1 a n

Как читать эту формулу? Квадрат суммы n слагаемых равен сумме квадратов всех слагаемых и удвоенных произведений всех возможных пар этих слагаемых.

Еще одна формула, которая может пригодится — формула формула разности n-ых степеней двух слагаемых.

a n — b n = a — b a n — 1 + a n — 2 b + a n — 3 b 2 + . . + a 2 b n — 2 + b n — 1

Эту формулу обычно разделяют на две формулы — соответственно для четных и нечетных степеней.

Для четных показателей 2m:

a 2 m — b 2 m = a 2 — b 2 a 2 m — 2 + a 2 m — 4 b 2 + a 2 m — 6 b 4 + . . + b 2 m — 2

Для нечетных показателей 2m+1:

a 2 m + 1 — b 2 m + 1 = a 2 — b 2 a 2 m + a 2 m — 1 b + a 2 m — 2 b 2 + . . + b 2 m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n = 2 и n = 3 соответственно. Для разности кубов b также заменяется на — b .

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

a + b 2 = a 2 + 2 a b + b 2 .

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a — b 2 = a 2 — 2 a b + b 2 запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Прочитаем формулу a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 . Куб суммы двух выражений a и b равен сумме кубов этих выражений, утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3 . Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a 2 — b 2 = a — b a + b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a 2 + a b + b 2 и a 2 — a b + b 2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Читайте также:  Доставка с амазон в россию отзывы

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

a — b 2 = a 2 — 2 a b + b 2 .

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a — b 2 = a — b a — b .

a — b a — b = a 2 — a b — b a + b 2 = a 2 — 2 a b + b 2 .

Формула доказана. Остальные ФСУ доказываются аналогично.

Примеры применения ФСУ

Цель использования формул сокращенного умножения — быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Упростим выражение 9 y — ( 1 + 3 y ) 2 .

Применим формулу суммы квадратов и получим:

9 y — ( 1 + 3 y ) 2 = 9 y — ( 1 + 6 y + 9 y 2 ) = 9 y — 1 — 6 y — 9 y 2 = 3 y — 1 — 9 y 2

Сократим дробь 8 x 3 — z 6 4 x 2 — z 4 .

Замечаем, что выражение в числителе — разность кубов, а в знаменателе — разность квадратов.

8 x 3 — z 6 4 x 2 — z 4 = 2 x — z ( 4 x 2 + 2 x z + z 4 ) 2 x — z 2 x + z .

Сокращаем и получаем:

8 x 3 — z 6 4 x 2 — z 4 = ( 4 x 2 + 2 x z + z 4 ) 2 x + z

Также ФСУ помогают вычислять значения выражений. Главное — уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79 . Вместо громоздких вычислений, запишем:

79 = 80 — 1 ; 79 2 = 80 — 1 2 = 6400 — 160 + 1 = 6241 .

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент — выделение квадрата двучлена. Выражение 4 x 2 + 4 x — 3 можно преобразовать в вид 2 x 2 + 2 · 2 · x · 1 + 1 2 — 4 = 2 x + 1 2 — 4 . Такие преобразования широко используются в интегрировании.

Рассмотрим квадрат трех слагаемых:

Представим его в таком виде:

Если рассматривать (a + b) как одно слагаемое, то мы можем применить формулу квадрата суммы для двух слагаемых:

((a + b) + c) 2 = (a + b) 2 + 2(a + b)c + c 2 = a 2 + 2ab + b 2 + 2ac + 2bc + c 2

Итак в результате преобразования мы получили:

(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc

Если бы слагаемых было 4, то в результате преобразования выглядели так:

(a + b + c + d) 2 = ((a + b) + (c + d)) 2 = (a + b) 2 + 2(a+b)(c+d) + (c + d) 2 = a 2 + 2ab + b 2 + 2ac + 2ad + 2bc + 2bd + c 2 + 2cd + d 2

В результате была бы получена следующая формула:

(a + b + c + d) 2 = a 2 + b 2 + c 2 + d 2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd

Вообще независимо от того, сколько слагаемых в квадрате суммы, при раскрытии скобок получается сумма квадратов всех слагаемых плюс удвоенные пары произведений этих слагаемых.

Вспомним формулу квадрата суммы двух чисел:

Читайте также:  Гугл мапс паттайя просмотр улиц

Квадрат суммы двух выражений равен сумме квадратов двух выражений плюс удвоенное произведение первого на второе.

Математическая запись будет выглядеть так $<(a+b)>^2=a^2+2ab+b^2$

Алгоритм нахождения квадрата суммы двух выражений

Возвести первый и второй одночлен или числа в квадрат.

Если одно из слагаемых является одночленом, то необходимо воспользоваться формулой возведения в степень произведения $степень$

Если выражение является одночленом, степень которого больше первой так же необходимо воспользоваться и правилом возведения степени в степень: при возведении степени в степень основание остается без изменений, а показатели степени перемножаются

Найти удвоенное произведение первого и второго слагаемого выражения.

Составить сумму выражений, найденных в п. 1,2.

Решение: воспользуемся алгоритмом нахождения квадрата суммы двух выражений

1.Возвести первый и второй одночлен или числа в квадрат.

2.Найти удвоенное произведение первого и второго слагаемого выражения.

[2cdot 3acdot 5=30a]

3.Составить сумму выражений, найденных в п. 1,2.

Попробуй обратиться за помощью к преподавателям

Переход к квадрату суммы трех чисел

Решение: Сгруппируем второе и третье слагаемое многочлена, тогда получим выражение:$ <(<2а>^2+(3a+5))>^2$

Теперь для преобразования нам уже надо возвести в квадрат суммы двух выражений, а не трех, как было в исходном задании. Воспользуемся алгоритмом

1.Возвести первое и второе слагаемое в квадрат.

2.Найти удвоенное произведение первого и второго слагаемого выражения.

$2cdot <2а>^2cdot left(3a+5
ight)=4а^2cdot left(3a+5
ight)=4а^2cdot 3a+4а^2cdot 5=12а^3+20а^2$

В данных преобразованиях был применен прием умножения одночлена на число и умножение одночлена на многочлен.

3.Составить сумму выражений, найденных в п. 1,2.

Тогда в итоге получим:

Проанализируем полученный результат сопоставив каждый член полученного многочлена с исходными.

[4a^4=<<(2а>^2)>^2 9a^2=<(3a)>^2 25=5^2 12а^3=2* <2а>^2*3a] [20а^2=2cdot <2а>^2cdot 5 30a=2cdot 3acdot 5]

Значит полученный результат мы можем записать в виде:

Отсюда выведем формулу для возведения в квадрат суммы трех слагаемых. Математическая запись будет выглядеть так:

Т.е квадрат суммы трех слагаемых равен сумме квадратов данных выражений плюс удвоенные попарные произведения этих слагаемых

Сформулируем алгоритм возведения в квадрат суммы трех слагаемых:

1.Возвести в квадрат каждое слагаемое, входящее в состав исходного многочлена

2.Найти попарные произведения всех слагаемых

3.Составить сумму выражений, входящих найденных в п.1,2

Задай вопрос специалистам и получи
ответ уже через 15 минут!