Как возвести в квадрат три слагаемых

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Формулы сокращенного умножения. Таблица

Впервые тема ФСУ рассматривается в рамках курса «Алгебра» за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a — b 2 = a 2 — 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3
  5. формула разности квадратов: a 2 — b 2 = a — b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 — a b + b 2
  7. формула разности кубов: a 3 — b 3 = a — b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы — соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.

Во-первых, рассмотрим формулу бинома Ньютона.

a + b n = C n 0 · a n + C n 1 · a n — 1 · b + C n 2 · a n — 2 · b 2 + . . + C n n — 1 · a · b n — 1 + C n n · b n

Здесь C n k — биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля. Биномиальные коэффициенты вычисляются по формуле:

C n k = n ! k ! · ( n — k ) ! = n ( n — 1 ) ( n — 2 ) . . ( n — ( k — 1 ) ) k !

Как видим, ФСУ для квадрата и куба разности и суммы — это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Читайте также:  Забыл парольную фразу opera

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a 1 + a 2 + . . + a n 2 = a 1 2 + a 2 2 + . . + a n 2 + 2 a 1 a 2 + 2 a 1 a 3 + . . + 2 a 1 a n + 2 a 2 a 3 + 2 a 2 a 4 + . . + 2 a 2 a n + 2 a n — 1 a n

Как читать эту формулу? Квадрат суммы n слагаемых равен сумме квадратов всех слагаемых и удвоенных произведений всех возможных пар этих слагаемых.

Еще одна формула, которая может пригодится — формула формула разности n-ых степеней двух слагаемых.

a n — b n = a — b a n — 1 + a n — 2 b + a n — 3 b 2 + . . + a 2 b n — 2 + b n — 1

Эту формулу обычно разделяют на две формулы — соответственно для четных и нечетных степеней.

Для четных показателей 2m:

a 2 m — b 2 m = a 2 — b 2 a 2 m — 2 + a 2 m — 4 b 2 + a 2 m — 6 b 4 + . . + b 2 m — 2

Для нечетных показателей 2m+1:

a 2 m + 1 — b 2 m + 1 = a 2 — b 2 a 2 m + a 2 m — 1 b + a 2 m — 2 b 2 + . . + b 2 m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n = 2 и n = 3 соответственно. Для разности кубов b также заменяется на — b .

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

a + b 2 = a 2 + 2 a b + b 2 .

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a — b 2 = a 2 — 2 a b + b 2 запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Прочитаем формулу a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 . Куб суммы двух выражений a и b равен сумме кубов этих выражений, утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3 . Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a 2 — b 2 = a — b a + b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a 2 + a b + b 2 и a 2 — a b + b 2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Читайте также:  Как взломать платные игры

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

a — b 2 = a 2 — 2 a b + b 2 .

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a — b 2 = a — b a — b .

a — b a — b = a 2 — a b — b a + b 2 = a 2 — 2 a b + b 2 .

Формула доказана. Остальные ФСУ доказываются аналогично.

Примеры применения ФСУ

Цель использования формул сокращенного умножения — быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Упростим выражение 9 y — ( 1 + 3 y ) 2 .

Применим формулу суммы квадратов и получим:

9 y — ( 1 + 3 y ) 2 = 9 y — ( 1 + 6 y + 9 y 2 ) = 9 y — 1 — 6 y — 9 y 2 = 3 y — 1 — 9 y 2

Сократим дробь 8 x 3 — z 6 4 x 2 — z 4 .

Замечаем, что выражение в числителе — разность кубов, а в знаменателе — разность квадратов.

8 x 3 — z 6 4 x 2 — z 4 = 2 x — z ( 4 x 2 + 2 x z + z 4 ) 2 x — z 2 x + z .

Сокращаем и получаем:

8 x 3 — z 6 4 x 2 — z 4 = ( 4 x 2 + 2 x z + z 4 ) 2 x + z

Также ФСУ помогают вычислять значения выражений. Главное — уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79 . Вместо громоздких вычислений, запишем:

79 = 80 — 1 ; 79 2 = 80 — 1 2 = 6400 — 160 + 1 = 6241 .

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент — выделение квадрата двучлена. Выражение 4 x 2 + 4 x — 3 можно преобразовать в вид 2 x 2 + 2 · 2 · x · 1 + 1 2 — 4 = 2 x + 1 2 — 4 . Такие преобразования широко используются в интегрировании.

Рассмотрим квадрат трех слагаемых:

Представим его в таком виде:

Если рассматривать (a + b) как одно слагаемое, то мы можем применить формулу квадрата суммы для двух слагаемых:

((a + b) + c) 2 = (a + b) 2 + 2(a + b)c + c 2 = a 2 + 2ab + b 2 + 2ac + 2bc + c 2

Итак в результате преобразования мы получили:

(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc

Если бы слагаемых было 4, то в результате преобразования выглядели так:

(a + b + c + d) 2 = ((a + b) + (c + d)) 2 = (a + b) 2 + 2(a+b)(c+d) + (c + d) 2 = a 2 + 2ab + b 2 + 2ac + 2ad + 2bc + 2bd + c 2 + 2cd + d 2

В результате была бы получена следующая формула:

(a + b + c + d) 2 = a 2 + b 2 + c 2 + d 2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd

Вообще независимо от того, сколько слагаемых в квадрате суммы, при раскрытии скобок получается сумма квадратов всех слагаемых плюс удвоенные пары произведений этих слагаемых.

Вспомним формулу квадрата суммы двух чисел:

Читайте также:  Значок сканера на принтере

Квадрат суммы двух выражений равен сумме квадратов двух выражений плюс удвоенное произведение первого на второе.

Математическая запись будет выглядеть так $<(a+b)>^2=a^2+2ab+b^2$

Алгоритм нахождения квадрата суммы двух выражений

Возвести первый и второй одночлен или числа в квадрат.

Если одно из слагаемых является одночленом, то необходимо воспользоваться формулой возведения в степень произведения $степень$

Если выражение является одночленом, степень которого больше первой так же необходимо воспользоваться и правилом возведения степени в степень: при возведении степени в степень основание остается без изменений, а показатели степени перемножаются

Найти удвоенное произведение первого и второго слагаемого выражения.

Составить сумму выражений, найденных в п. 1,2.

Решение: воспользуемся алгоритмом нахождения квадрата суммы двух выражений

1.Возвести первый и второй одночлен или числа в квадрат.

2.Найти удвоенное произведение первого и второго слагаемого выражения.

[2cdot 3acdot 5=30a]

3.Составить сумму выражений, найденных в п. 1,2.

Попробуй обратиться за помощью к преподавателям

Переход к квадрату суммы трех чисел

Решение: Сгруппируем второе и третье слагаемое многочлена, тогда получим выражение:$ <(<2а>^2+(3a+5))>^2$

Теперь для преобразования нам уже надо возвести в квадрат суммы двух выражений, а не трех, как было в исходном задании. Воспользуемся алгоритмом

1.Возвести первое и второе слагаемое в квадрат.

2.Найти удвоенное произведение первого и второго слагаемого выражения.

$2cdot <2а>^2cdot left(3a+5
ight)=4а^2cdot left(3a+5
ight)=4а^2cdot 3a+4а^2cdot 5=12а^3+20а^2$

В данных преобразованиях был применен прием умножения одночлена на число и умножение одночлена на многочлен.

3.Составить сумму выражений, найденных в п. 1,2.

Тогда в итоге получим:

Проанализируем полученный результат сопоставив каждый член полученного многочлена с исходными.

[4a^4=<<(2а>^2)>^2 9a^2=<(3a)>^2 25=5^2 12а^3=2* <2а>^2*3a] [20а^2=2cdot <2а>^2cdot 5 30a=2cdot 3acdot 5]

Значит полученный результат мы можем записать в виде:

Отсюда выведем формулу для возведения в квадрат суммы трех слагаемых. Математическая запись будет выглядеть так:

Т.е квадрат суммы трех слагаемых равен сумме квадратов данных выражений плюс удвоенные попарные произведения этих слагаемых

Сформулируем алгоритм возведения в квадрат суммы трех слагаемых:

1.Возвести в квадрат каждое слагаемое, входящее в состав исходного многочлена

2.Найти попарные произведения всех слагаемых

3.Составить сумму выражений, входящих найденных в п.1,2

Задай вопрос специалистам и получи
ответ уже через 15 минут!